掃描電子顯微鏡的制造是依據(jù)電子與物質的相互作用。當一束高能的入射電子轟擊物質表面時,被激發(fā)的區(qū)域將產生二次電子、俄歇電子、特征x射線和連續(xù)譜X射線、背散射電子、透射電子,以及在可見、紫外、紅外光區(qū)域產生的電磁輻射。同時,也可產生電子-空穴對、晶格振動 (聲子)、電子振蕩 (等離子體)。被廣泛地應用于化學、生物、醫(yī)學、冶金、材料、半導體制造、微電路檢查等各個研究領域和工業(yè)部門。
關于掃描電子顯微鏡的15個問題
1. 光學顯微鏡以可見光為介質,電子顯微鏡以電子束為介質,由于電子束波長遠較可見光小,故電子顯微鏡分辨率遠比光學顯微鏡高。光學顯微鏡放大倍率最高只有約1500倍,掃描式顯微鏡可放大到10000倍以上。
2. 根據(jù)de Broglie波動理論,電子的波長僅與加速電壓有關:
λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (Å)
在 10 KV 的加速電壓之下,電子的波長僅為0.12Å,遠低于可見光的4000 - 7000Å,所以電子顯微鏡分辨率自然比光學顯微鏡*許多,但是掃描式電子顯微鏡的電子束直徑大多在50-100Å之間,電子與原子核的彈性散射 (Elastic Scattering) 與非彈性散射 (Inelastic Scattering) 的反應體積又會比原有的電子束直徑增大,因此一般穿透式電子顯微鏡的分辨率比掃描式電子顯微鏡高。
3. 掃描式顯微鏡有一重要特色是具有超大的景深(depth of field),約為光學顯微鏡的300倍,使得掃描式顯微鏡比光學顯微鏡更適合觀察表面起伏程度較大的樣品。
4. 掃描式電子顯微鏡,其系統(tǒng)設計由上而下,由電子槍 (Electron Gun) 發(fā)射電子束,經過一組磁透鏡聚焦 (Condenser Lens) 聚焦后,用遮蔽孔徑 (Condenser Aperture) 選擇電子束的尺寸(Beam Size)后,通過一組控制電子束的掃描線圈,再透過物鏡 (Objective Lens) 聚焦,打在樣品上,在樣品的上側裝有訊號接收器,用以擇取二次電子 (Secondary Electron) 或背向散射電子 (Backscattered Electron) 成像。
5. 電子槍的必要特性是亮度要高、電子能量散布 (Energy Spread) 要小,目前常用的種類計有三種,鎢(W)燈絲、六硼化鑭(LaB6)燈絲、場發(fā)射 (Field Emission),不同的燈絲在電子源大小、電流量、電流穩(wěn)定度及電子源壽命等均有差異。
6. 熱游離方式電子槍有鎢(W)燈絲及六硼化鑭(LaB6)燈絲兩種,它是利用高溫使電子具有足夠的能量去克服電子槍材料的功函數(shù)(work function)能障而逃離。對發(fā)射電流密度有重大影響的變量是溫度和功函數(shù),但因操作電子槍時均希望能以至低的溫度來操作,以減少材料的揮發(fā),所以在操作溫度不提高的狀況下,就需采用低功函數(shù)的材料來提高發(fā)射電流密度。
7. 價錢便宜使用普遍的是鎢燈絲,以熱游離 (Thermionization) 式來發(fā)射電子,電子能量散布為 2 eV,鎢的功函數(shù)約為4.5eV,鎢燈絲系一直徑約100µm,彎曲成V形的細線,操作溫度約2700K,電流密度為1.75A/cm2,在使用中燈絲的直徑隨著鎢絲的蒸發(fā)變小,使用壽命約為40~80小時。
8. 六硼化鑭(LaB6)燈絲的功函數(shù)為2.4eV,較鎢絲為低,因此同樣的電流密度,使用LaB6只要在1500K即可達到,而且亮度更高,因此使用壽命便比鎢絲高出許多,電子能量散布為 1 eV,比鎢絲要好。但因LaB6在加熱時活性很強,所以必須在較好的真空環(huán)境下操作,因此儀器的購置費用較高。
9. 場發(fā)射式電子槍則比鎢燈絲和六硼化鑭燈絲的亮度又分別高出 10 - 100 倍,同時電子能量散布僅為 0.2 - 0.3 eV,所以目前市售的高分辨率掃描式電子顯微鏡都采用場發(fā)射式電子槍,其分辨率可高達 1nm 以下。
10. 場發(fā)射電子槍可細分成三種:冷場發(fā)射式(cold field emission , FE),熱場發(fā)射式(thermal field emission ,TF),及蕭基發(fā)射式(Schottky emission ,SE)
11. 當在真空中的金屬表面受到108V/cm大小的電子加速電場時,會有可觀數(shù)量的電子發(fā)射出來,此過程叫做場發(fā)射,其原理是高電場使電子的電位障礙產生 Schottky效應,亦即使能障寬度變窄,高度變低,因此電子可直接"穿隧"通過此狹窄能障并離開陰極。場發(fā)射電子系從很尖銳的陰極尖部所發(fā)射出來,因此可得極細而又具高電流密度的電子束,其亮度可達熱游離電子槍的數(shù)百倍,或甚至千倍。
12. 場發(fā)射電子槍所選用的陰極材料必需是高強度材料,以能承受高電場所加諸在陰極尖部的高機械應力,鎢即因高強度而成為較佳的陰極材料。場發(fā)射槍通常以上下一組陽極來產生吸取電子、聚焦、及加速電子等功能。利用陽極的特殊外形所產生的靜電場,能對電子產生聚焦效果,所以不再需要韋氏罩或柵極。第一(上)陽極主要是改變場發(fā)射的拔出電壓(extraction voltage),以控制針尖場發(fā)射的電流強度,而第二(下)陽極主要是決定加速電壓,以將電子加速至所需要的能量。
13. 要從極細的鎢針尖場發(fā)射電子,金屬表面必需*干凈,無任何外來材料的原子或分子在其表面,即使只有一個外來原子落在表面亦會降低電子的場發(fā)射,所以場發(fā)射電子槍必需保持超高真空度,來防止鎢陰極表面累積原子。由于超高真空設備價格極為高昂,所以一般除非需要高分辨率SEM,否則較少采用場發(fā)射電子槍。
14. 冷場發(fā)射式最大的優(yōu)點為電子束直徑最小,亮度最高,因此影像分辨率*。能量散布最小,故能改善在低電壓操作的效果。為避免針尖被外來氣體吸附,而降低場發(fā)射電流,并使發(fā)射電流不穩(wěn)定,冷場發(fā)射式電子槍必需在10-10 torr的真空度下操作,雖然如此,還是需要定時短暫加熱針尖至2500K(此過程叫做flashing),以去除所吸附的氣體原子。它的另一缺點是發(fā)射的總電流最小。
15. 熱場發(fā)式電子槍是在1800K溫度下操作,避免了大部份的氣體分子吸附在針尖表面,所以免除了針尖flashing的需要。熱式能維持較佳的發(fā)射電流穩(wěn)定度,并能在較差的真空度下(10-9 torr)操作。雖然亮度與冷式相類似,但其電子能量散布卻比冷式大3~5倍,影像分辨率較差,通常較不常使用。
立即詢價
您提交后,專屬客服將第一時間為您服務