PRI-8800 PLUS全自動(dòng)變溫培養(yǎng)土壤溫室氣體在線測(cè)量系統(tǒng)
01 主要特點(diǎn)
可設(shè)定恒溫或變溫培養(yǎng)模式;
溫度控制波動(dòng)優(yōu)于±0.05℃;
平均升降溫速率不小于1°C/5min;
14 cm D x 50 cm H,9位樣品盤;
大氣本底緩沖氣或鋼瓶氣清洗氣路;
可以外接濃度和同位素分析儀等。
02 選型推薦
PRI-8800 Plus全自動(dòng)變溫培養(yǎng)土壤溫室氣體在線測(cè)量系統(tǒng)主要包含自動(dòng)進(jìn)樣器、水槽、壓縮機(jī)、CO2 H2O分析儀、內(nèi)部計(jì)算機(jī)、9位樣品盤等,9個(gè)原狀測(cè)量套件;可選土壤溫度傳感器、土壤濕度和鹽度傳感器、土壤水勢(shì)傳感器、水位傳感器等。
04 實(shí)驗(yàn)設(shè)計(jì)
2)濕地淹水深度模擬:在quan球尺度上濕地甲烷(CH4)排放的溫度敏感性大小主要取決于水位變化,而二氧化碳(CO2)排放的溫度敏感性不受水位影響。復(fù)雜多樣的濕地生態(tài)系統(tǒng)不同水位的變化及不同溫度的變化如何影響和調(diào)控著濕地溫室氣體的排放?我們?cè)撊绾瘟炕煌坏淖兓安煌瑴囟鹊淖兓聺竦氐臏厥覛怏w排放?借助PRI-8800 Plus,通過淹水深度和溫度變化的組合測(cè)試,可以查出真相。
3)溫度依賴性的研究:既然溫度的變化會(huì)極大影響土壤呼吸,基于溫度變化的Q10研究成為科學(xué)家研究中重中之重。2017年Robinson提出的zui低20個(gè)溫度梯度擬合土壤呼吸對(duì)溫度響應(yīng)曲線的建議,將糾正以往研究人員只設(shè)置3-5個(gè)溫度點(diǎn)(大約相隔5-10℃)進(jìn)行呼吸測(cè)量的做法,該建議能解決傳統(tǒng)方法因溫度梯度少而導(dǎo)致的不同土壤的呼吸對(duì)溫度變化擬合相似度高的問題,更能提升不同的理論模型或隨后模型推算結(jié)果的準(zhǔn)確性。而上述至少20個(gè)溫度點(diǎn)的設(shè)置和對(duì)應(yīng)的土壤呼吸測(cè)量,僅僅需要在PRI-8800 Plus程序中預(yù)設(shè)幾個(gè)溫度梯度即可完成多個(gè)樣品在不同溫度下的自動(dòng)測(cè)量,這將極大提高科學(xué)家的工作效率。
除了上述變溫應(yīng)用案例外,科學(xué)家還可以依據(jù)自己的實(shí)驗(yàn)設(shè)計(jì)進(jìn)行諸如日變化、月變化、季節(jié)變化、甚至年度溫度變化的模擬培養(yǎng),通過PRI-8800 Plus的“傻瓜式”操作測(cè)量,將極大減少科學(xué)家實(shí)驗(yàn)實(shí)施的周期和工作量,并提高了工作效率。
PRI-8800 Plus除了具有上述變溫培養(yǎng)的特色,還可以進(jìn)行恒溫培養(yǎng),抑或是恒溫/變溫交替培養(yǎng),這些組合無疑拓展了系統(tǒng)在不同溫度組合條件下的應(yīng)用場(chǎng)景。
4)水分依賴性的研究:多數(shù)研究表明,在溫度恒定的情況下,Q10很容易受土壤含水量的影響,表現(xiàn)出一定的水分依賴特性。PRI-8800 Plus可以通過手動(dòng)調(diào)整土壤含水量的做法,并在PRI-8800 Plus快速連續(xù)測(cè)量模式下,實(shí)現(xiàn)不同水分梯度條件下土壤呼吸的精準(zhǔn)測(cè)量,而PRI-8800 Plus的邏輯設(shè)計(jì),為短期、中期和長(zhǎng)期濕度控制條件下的土壤呼吸的連續(xù)、高品質(zhì)測(cè)量提供了可能。
5)底物依賴性的研究:底物物質(zhì)量與Q10密切相關(guān),這里的底物包含不限于自然態(tài)的土壤,如含碳量,含氮量,易分解/難分解的碳比例、土壤粘粒含量、酸堿鹽度等;也可能包含了某些外源底物,如外源的生物質(zhì)碳、微生物種群、各種肥料、呼吸促進(jìn)/抑制劑、同位素試劑等。通過PRI-8800快速在線變溫培養(yǎng)測(cè)量,能加速某些研究進(jìn)程并獲得可靠結(jié)果,如生物質(zhì)炭在土壤改良過程中的土壤呼吸研究、緩釋肥緩釋不同階段對(duì)土壤呼吸的持續(xù)影響、鹽堿土壤不同改良措施下的土壤呼吸的變化響應(yīng)等等。
05 相關(guān)文獻(xiàn)信息
2.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.
3.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.
4.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.
5.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.
6.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.
7.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.
8.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.
9.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.
10.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.
11.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.
12.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.
13.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.
14.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.
15.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.
16.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.
19.Li C, Xiao CW*, Li MX, Xu L, He NP. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands. Geoderma. 2023, 432: 116385.
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。