當前位置:廈門沃泰科技有限公司>>技術文章>>傳統A²O工藝技術改造路線詳解(二)
傳統A²O工藝技術改造路線詳解(二)
按照回流位置的不同,溶解氧(DO)殘余干擾主要包括:
1)從分子態氧(O2)和硝酸鹽(NO3-N)作為電子受體的氧化產能數據分析,以O2作為電子受體的產能約為NO3-N的1.5倍,因此當系統中同時存在O2和NO3-N時,反硝化菌及普通異養菌將優先以O2為電子受體進行產能代謝。
2)氧的存在破壞了PAOs釋磷所需的“厭氧壓抑”環境,致使厭氧菌以O2為終電子受體而抑制其發酵產酸作用,妨礙磷的正常釋放,同時也將導致好氧異養菌與PAOs進行碳源競爭。
一般厭氧區的DO的質量濃度應嚴格控制在0.2mg/L以下。從某種意義上來說硝酸鹽及DO殘余干擾釋磷或反硝化過程歸根還是功能菌對碳源的競爭問題。
傳統A²O工藝改進策略分析
01基于SRT矛盾的復合式
A²/O工藝在傳統A²/O工藝的好氧區投加浮動載體填料,使載體表面附著生長自養硝化菌,而PAOs和反硝化菌則處于懸浮生長狀態,這樣附著態的自養硝化菌的SRT相對獨立,其硝化速率受短SRT排泥的影響較小,甚至在一定程度上得到強化。pH做為zui基本的污水指標,勢必成為供求的熱點,這對廣大的E-1312 pH電極,S400-RT33 pH電極制造商,比如美國BroadleyJames來說是個重大利好。美國BroadleyJames做為老牌的E-1312 pH電極,S400-RT33 pH電極制造商,必將為中國的環保事業帶來可觀的經濟效益。我們美國BroadleyJames生產的E-1312 pH電極,S400-RT33 pH電極經久耐用,質量可靠,測試準確,廣泛應用于各級環保污水監測以及污水處理過程。
懸浮污泥SRT、填料投配比及投配位置的選擇不僅要考慮硝化的增強程度,還要考慮懸浮態污泥含量降低對系統反硝化和除磷的負面影響。
載體填料的投配并不意味可大幅度增加系統排泥量,縮短懸浮污泥SRT以提高系統除磷效率;相反,SRT的縮短可能降低懸浮態污泥(MLSS)含量,從而影響系統的反硝化效果,甚至造成除磷效果惡化。
有研究表明,當懸浮污泥SRT控制為5d時,復合式A²/O工藝的硝化效果與傳統A²/O工藝相比,兩者的硝化效果無明顯差異,復合式A²/O工藝的載體填料不能*獨立地發揮其硝化性能;若再降低懸浮污泥SRT則因系統懸浮污泥含量的降低致使硝酸鹽積累,影響厭氧磷的正常釋放。
02基于“碳源競爭”角度的工藝
解決傳統A²/O工藝碳源競爭及其硝酸鹽和DO殘余干擾釋磷或反硝化的問題,主要集中在3方面:
針對碳源競爭采取的解決策略,如補充外碳源、反硝化和釋磷重新分配碳源(如倒置A²/O工藝)等;
解決硝酸鹽干擾釋磷提出的工藝改革,如JHB、UCT、MUCT等工藝;
針對DO殘余干擾釋磷、反硝化的問題,可在好氧區末端增設適當容積的“非曝氣區”。
1、補充外碳源
補充外碳源是在不改變原有工藝池體結構及各功能區順序的情況下,針對短期內因水質波動引起碳源不足而提出的應急措施。一般供選擇的碳源可分為2類:
1)甲醇、乙醇、葡萄糖和乙酸鈉等有機化合物;
2)可替代有機碳源,如厭氧消化污泥上清液、木屑、牲畜或家禽糞便及含高碳源的工業廢水等。相對糖類、纖維素等高碳物質而言,因微生物以低分子碳水化合物(如,甲醇、乙酸鈉等)為碳源進行合成代謝時所需能量較大,使其更傾向于利用此類碳源進行分解代謝,如反硝化等。
任何外碳源的投加都要使系統經歷一定的適應期,方可達到預期的效果。
針對要解決的矛盾主體選擇合適的碳源投加點對系統的穩定運行和節能降耗至關重要。一般在厭氧區投加外碳源不僅能改善系統除磷效果,而且可增強系統的反硝化潛能;但是若反硝化碳源嚴重不足致使系統TN脫除欠佳時,應優先考慮向缺氧區投加。
2、倒置A²/O工藝及其改良工藝
傳統A²/O工藝以犧牲系統的反硝化速率為前提,優先考慮釋磷對碳源的需求,而將厭氧區置于工藝前端,缺氧區后置,忽視了釋磷本身并非除磷工藝的目的所在。
從除磷角度分析可知,倒置A²/O工藝還具有2個優勢:
“饑餓效應”。PAOs厭氧釋磷后直接進入生化效率較高的好氧環境,其在厭氧條件下形成的攝磷驅動力可以得到充分地利用。
“群體效應”。允許所有參與回流的污泥經歷完整的釋磷、攝磷過程。然而有研究者認為,倒置A2/O工藝的布置形式。
3、JHB、UCT及改良UCT工藝
與分點進水倒置A2/O工藝相比,JHB(亦稱A+A2/O工藝)和UCT工藝的設計初衷是通過改變外回流位點以解決硝酸鹽、DO殘余干擾釋磷。