產品分類品牌分類
-
歐姆龍 3D-Xray X750 歐姆龍 3D-Xray X700 歐姆龍OMRON AOI S530 歐姆龍OMRON 3D AOIS730 ViTrox偉特3D-Xray V810 ViTrox偉特 3D AOIV510 ViTrox偉特 TR/TH3000i 依科視朗YXLON Xray 依科視朗 工業CT UX20 諾信Matrix 3D-Xray X3 德律TRI 3D-XRayTR7600 尼康X-TEk 3D-Xray XTH450 尼康X-TEk 3D-Xray XTH225 尼康X-TEk Xray XTV160 GE phoenix 3D Xray VISCOM 3D-XrayX7056 諾信 Yestech Xray 諾信 DAGE Xray Pony 3D-Xray 是德Agilent安捷倫ICT3070 Agilent安捷倫AOI SJ50 Agilent安捷倫 3D-Xray5DX
緊固件裂紋居然引發了“傳統”與“未來”探傷方法的發展思考
常規檢測方法
目前,機械、建筑和采油等工程領域一般簡單的裂紋檢測都采用常規檢測方法。針對不同的機構采用的檢測方法不同,例如:
超聲檢測主要應用于對金屬板材、管材和棒材,鑄件、鍛件和焊縫以及橋梁、房屋建筑等混凝土構建的檢測;
射線檢測主要用于機械、兵器、造船、電子、航空航天、石油化工等領域中的鑄件、焊縫等的檢測;
磁粉檢測主要應用于金屬鑄件、鍛件和焊縫的檢測;
滲透檢測主要應用于有色金屬和黑色金屬材料的鑄件、鍛件、焊接件、粉末冶金件以及陶瓷、塑料和玻璃制品的檢測;
渦流檢測主要應用于導電管材、棒材、線材的探傷和材料分選。
針對緊固件的裂紋檢測,可以采用超聲檢測和渦流檢測。
例如,在緊固件小裂紋最佳渦流檢測參數試驗研究中,得到了小裂紋渦流檢測參數與相位信號呈線性關系的*佳檢測參數區段,這對提高棒料小裂紋檢測精度和外置式緊固件渦流檢測參數的選擇具有重要的指導作用。
但渦流檢測干擾因素較多,需要特殊的信號處理技術。
另外還有蘭姆波(Lamb wave)傳播能量譜結構裂紋檢測方法,具有穿透能力強、靈敏度高、快捷方便的特點,但是有時會產生盲區,發生阻塞現象,不能發現近距離裂紋,對所發現的缺陷作定性、定量表征比較困難。
非常規檢測方法
當對緊固件進行裂紋檢測時,若常規檢測方法達不到所要求的目的,可以考慮用非常規檢測方法。下面列舉三種常用的非常規裂紋檢測方法。
該技術在承壓設備裂紋檢測方面最為成熟,在壓力容器、承壓管道的安全評定中已取得較為理想的效果,在航天航空、復合材料等裂紋檢測方面也得到大力發展。
缺點是檢測受材料影響很大;檢測室受電噪聲和機械噪聲的影響;定位精度不高,對裂紋的識別只能給出有限的信息。
主要應用于電力設備、石化設備、機械加工過程檢測、火災檢測、農作物優種以及材料與構件中的缺陷無損檢測。
紅外檢測的缺點是由于檢測靈敏度與熱輻射率相關,因此受試件表面及背景輻射的干擾,受缺陷大小、埋藏深度的影響,對原試件分辨率差,不能精確測定缺陷的形狀、大小和位置,檢測結果的解釋比較復雜,需要有參考標準,檢測操作人員需要經過培訓等。
主要用于蜂窩結構、復合材料檢測,固體火箭發動機的外殼、絕熱層、包覆層及推進劑藥柱各界面之間缺陷檢測,印制電路板焊點質量檢測以及壓力容器疲勞裂紋檢測等。
另外,激光全息檢測多在暗室進行,并需要采取嚴格的隔振措施,因此不利于現場檢測,具有一定的局限性。
隨著科學技術的迅速發展,機械、建筑和采油等工程領域對裂紋檢測的要求也越來越高,因此出現了很多裂紋檢測新技術?;谛盘柼幚淼牧鸭y檢測方法和電磁(渦流)脈沖無損檢測是現代常用的新技術。
基于小波分析的裂紋檢測方法
隨著信號處理技術的發展,出現了基于信號處理的裂紋檢測方法,包括時間域、頻率域及時頻域方法,主要有傅里葉變換、短時傅里葉變換、WignerVille分布、希爾伯特-黃變換(HHT)、盲源分離等。
其中小波分析的方法有代表性。直接利用小波分析的裂紋識別方法可以分為以下兩種:
包括利用時域分解圖的奇異點的方法、利用小波系數變化的方法和利用小波分解后能量變化的方法?;跁r域響應的分析方法旨在發現裂紋損傷發生的時刻。
就是用空間位置的空間坐標軸代替時域響應信號的時間軸,以空間域響應作為輸入進行小波分析。基于空間域響應分析方法可以確定發生裂紋的位置。
小波方法本身只能進行損傷發生時刻或損傷發生位置的判斷,且前者的應用更多一些。若想識別小裂紋,則需要將小波與其他方法結合對裂紋進行檢測。
電磁(渦流)脈沖檢測
電磁技術結合超聲檢測、渦流成像、陣列渦流和脈沖渦流檢測等諸多功能,形成了現代電磁檢測新技術。
其中常見的裂紋檢測技術有脈沖渦流檢測、脈沖渦流熱成像技術、脈沖渦流和電磁聲換能器(EMAT)雙探頭無損檢測以及金屬磁記憶檢測技術。
脈沖渦流用一個脈沖電流來激勵線圈,對檢測探頭感應的時域瞬態響應信號進行分析,選用信號的峰值、過零時間和峰值時間來對裂紋進行定量檢測。
國防科技大學楊賓峰等通過試驗證明脈沖渦流只需一次掃描就可對被測試件上不同深度的裂紋實現定量檢測;有研究人員利用諧波線圈的替代技術進行脈沖渦流檢測,以自身電場對導體內部總電場的貢獻的電偶極子形式的改變高于磁場傳感器所測導體上的改變,找到裂紋區電偶極子的分布密度來檢測裂紋。
脈沖渦流的缺點是脈沖渦流信號的峰值極易受到其他因素的影響(如提離效應),還有脈沖渦流探頭的檢測能力都會影響裂紋的檢測。
脈沖渦流成像儀器都采用線圈作為檢查傳感器。
有人用霍爾傳感器作為檢查傳感器。近年來超量子干涉儀器開始應用到無損檢側領域。
利用脈沖渦流熱成像技術消除了其他檢測中的提離效應,避免成像結果產生失真。
裂紋損傷檢測會有很多不確定性,因此提出采用統計推斷方法處理系統識別問題。
隨著社會經濟的不斷發展,對緊固件裂紋的檢測手段要求也越來越高,它必須符合實時在線檢測、靈敏度高、操作簡單以及不易受外界干擾等要求,能夠在惡劣的外部環境中工作;迅速準確地檢測到裂紋的位置、大小、寬度、深度和發展趨勢等;檢測結果可以圖像方式顯示,可以進行分析;集檢測速度快、效率高、結果直觀于一體。