產品簡介
污水中因氨氮濃度不同分為高低濃度氨氮廢水,在實際應用中氨氮濃度大于500PPM的廢水需要預處理(稱為高氨氮廢水 ),然后配合低氨氮廢水的處理工藝進行后的脫氮,因高氨氮廢水與低氨氮廢水采用的工藝不同,
詳細介紹
泰興高氨氮廢水處理設備
將空氣通入廢水中,使廢水中溶解性氣體和易揮發性溶質由液相轉入氣相,使廢水得到處理的過程稱為吹脫,常見的工藝流程見圖1。
吹脫法的基本原理是氣液相平衡和傳質速度理論。將氨氮廢水pH 調節至堿性,此時,銨離子轉化為氨分子,再向水中通入氣體,使其與液體充分接觸,廢水中溶解的氣體和揮發性氨分子穿過氣液界面,轉至氣相,從而達到去除氨氮的目的。常用空氣或水蒸氣作載氣,前者稱為空氣吹脫,后者稱為蒸汽吹脫。
蒸汽吹脫法效率較高,氨氮去除率能達到90%以上,但能耗較大,一般應用在煉鋼、化肥、石油化工等行業,其優點是可回收利用氨,經過吹脫處理后可回收到氨質量分數達30%以上的氨水??諝獯得摲ǖ男孰m比蒸汽法的低,但能耗低、設備簡單、操作方便。在氨氮總量不高的情況下,采用空氣吹脫法比較經濟,同時可用硫酸作吸收劑吸收吹脫出的氨氮,生成的硫酸銨可制成化肥。
但是在大規模的氨吹脫-汽提塔生產過程中, 產生水垢是較棘手的問題。通過安裝噴淋水系統可有效解決軟質水垢問題,可是對于硬質水垢,噴淋裝置也無法消除。此外,低溫時氨氮去除率低,吹脫的氣體形成二次污染。因此,吹脫法一般與其他氨氮廢水處理方法聯合運用,用吹脫法對高濃度氨氮廢水進行預處理。吹脫工藝條件,見表1。
通過對比分析表1 可以得出:(1)吹脫法普遍適宜的pH 在11 附近;(2)考慮經濟因素,溫度在30~40 ℃附近較為可行,且處理率高;(3)吹脫時間為3 h左右;(4)氣液比在5 000∶1 左右效果較好,且吹脫溫度越高,氣液比越小;(5)吹脫后廢水的濃度可降低到中低濃度;(6)脫氮率基本保持90%以上。盡管吹脫法可以將大部分氨氮脫除, 但處理后的廢水中氨氮仍然高達100 mg/L 以上,無法直接排放,還需要后續深度處理。
2、鳥糞石法(磷酸銨鎂沉淀法)
化學沉淀法的原理,是向氨氮污水中投加含Mg2+ 和PO43- 的藥劑, 使污水中的氨氮和磷以鳥糞石(磷酸銨鎂)的形式沉淀出來,同時回收污水中的氮和磷。
化學沉淀法的優點主要表現在:工藝設計操作相對簡單;反應穩定,受外界環境影響小,抗沖擊能力強;脫氮率高,效果明顯,生成的磷酸銨鎂可作為無機復合肥使用,解決了氮的回收和二次污染的問題,具有良好的經濟和環境效益。磷酸銨鎂沉淀法適用于處理氨氮濃度較高的工業廢水, 表2 總結了一些使用化學沉淀法處理氨氮廢水的案例。
通過對表2 的比較, 磷酸銨鎂沉淀法處理氨氮廢水的適宜條件是:pH 約為9.0,n(P)∶n(N)∶n(Mg)在1∶1∶1.2 左右,磷酸銨鎂沉淀法的脫氮率能維持在較高水平,普遍能夠達到90%以上。
二、低濃度氨氮工業廢水處理技術
廢水中氨氮的構成主要有兩種,一種是氨水形成的氨氮,一種是無機氨形成的氨氮,主要是硫酸銨、氯化銨等。氨氮是造成水體富營養化的重要因素之一, 對這類污水進行回收利用時還會對管道中的金屬產生腐蝕作用, 縮短設備和管道的壽命,增加維護成本。目前工業上常用于處理低濃度氨氮的技術主要有吸附法、折點氯化法、生物法、膜技術等。
1、吸附法
吸附是一種或幾種物質(稱為吸附物)的濃度在另一種物質(稱為吸附劑)表面上自動發生變化的過程, 其實質是物質從液相或氣相到固體表面的一種傳質現象。
吸附法是處理低濃度氨氮廢水較有發展前景的方法之一。吸附法常利用多孔性固體作為吸附劑,根據吸附原理不同可分為物理吸附、化學吸附和交換吸附。處理低濃度氨氮廢水較為理想的是離子交換吸附法,它屬于交換吸附方法的一種,利用吸附劑上的可交換離子與廢水中的NH4+ 發生交換并吸附NH3 分子以達到去除水中氨的目的, 這是一個可逆過程, 離子間的濃度差和吸附劑對離子的親和力為吸附過程提供動力。
具有良好吸附性能且常用的吸附劑有:沸石、活性炭、煤炭、離子交換樹脂等,根據其吸附原理的不同,這些吸附材料對不同吸附物的吸附效果不同。
該法一般只適用于低濃度氨氮廢水, 而對于高濃度的氨氮廢水, 使用吸附法會因吸附劑更換頻繁而造成操作困難, 因此需要結合其他工藝來協同完成脫氮過程。供吸附法使用的吸附劑很多, 但不同吸附劑對廢水中氨氮的吸附量卻有很大不同, 表3 對比了部分吸附劑的吸附效果。
泰興高氨氮廢水處理設備
高氨氮廢水處理工藝
目前高氨氮廢水處理工藝有吹脫工藝、蒸氨工藝、生物法三種。
吹脫工藝
吹脫工藝是將廢水中的離子態銨(NH4+),通過調節pH值轉化為分子態氨,隨后被通入的空氣或蒸汽吹出。 吹脫法通常用于高濃度氨氮廢水的預處理,該處理技術優點在于除氨效果穩定,操作簡單,容易控制。
蒸氨工藝
蒸氨是將焦化工序產生的化工分離廢水和剩余氨水進行蒸餾,通過蒸氨處理后,降低其NH3—N含量,為下一步生化處理進行必要的前期處理。
生物法
通過微生物作用將水體中有機氮轉化為銨態氮,進一步轉化為硝態氮,在反硝化細菌的作用下轉化為氮氣的過程。進行生物脫氮可分為氨化-硝化-反硝化三個步驟。
一般來說,廢水經過高濃度氨氮廢水處理工藝后都能達標,但是由于水質復雜,工藝老化等原因都有可能導致氨氮廢水不達標。在遇到經過工藝降到中低濃度但不達標時就可在工藝后端投加氨氮去除劑。
氨氮去除劑的特點:
反應快速,6分鐘即可完成反應過程
去除率高達96%
氨氮廢水治理主要來源于化肥、焦化、石化、制藥、食品、垃圾填埋場等,大量氨氮廢水排入水體不僅引起水體富營養化、造成水體黑臭,給水處理的難度和成本加大,甚至對人群及生物產生毒害作用,針對氨氮廢水的處理工藝(2014年前)有生物法、物化法的各種處理工藝等。
目前隨著化肥、石油化工等行業的迅速發展壯大,由此而產生的高氨氮廢水治理也成為行業發展制約因素之一;據報道,2001年我國海域發生赤潮高達77次,氨氮是污染的重要原因之一,特別是高濃度氨氮廢水造成的污染。因此,經濟有效的控制高濃度污染也成為當前環保工作者研究的重要課題,得到了業內人士的高度重視。氨氮廢水的一般的形成是由于氨水和無機氨共同存在所造成的,一般上pH在中性以上的廢水氨氮的主要來源是無機氨和氨水共同的作用,pH在酸性的條件下廢水中的氨氮主要由于無機氨所導致。廢水中氨氮的構成主要有兩種,一種是氨水形成的氨氮,一種是無機氨形成的氨氮,主要是硫酸銨,氯化銨等等。