詳細介紹
新能源測試冷水機
三種冷卻方式進行簡單介紹。
風冷
風冷是以低溫空氣為介質,利用熱的對流,降低電池溫度的一種散熱方式,分為自然冷卻和強制冷卻(利用風機等)。該技術利用自然風或風機,配合汽車自帶的蒸發器為電池降溫,系統結構簡單、便于維護,在*的電動乘用車應用廣泛,如日產聆風(Nissan Leaf)、起亞Soul EV等,在目前的電動巴士、電動物流車中也被廣泛采納。
液冷
液體冷卻技術通過液體對流換熱,將電池產生的熱量帶走,降低電池溫度。液體介質的換熱系數高、熱容量大、冷卻速度快,對降低高溫度、提升電池組溫度場*性的*,同時,熱管理系統的體積也相對較小。液冷系統形式較為靈活: 可將電池單體或模塊沉浸在液體中,也可在電池模塊間設置冷卻通道,或在電池底部采用冷卻板。電池與液體直接接觸時,液體必須保證絕緣( 如礦物油) ,避免短路。同時,對液冷系統的氣密性要求也較高。此外,就是機械強度,耐振動性,以及壽命要求。液冷是目前許多電動乘用車的優選方案,國內外的典型產品如寶馬i3、特斯拉、通用沃藍達(Volt)、華晨寶馬之諾、吉利帝豪EV。
直冷
直冷(制冷劑直接冷卻):利用制冷劑(R134a等)蒸發潛熱的原理,在整車或電池系統中建立空調系統,將空調系統的蒸發器安裝在電池系統中,制冷劑在蒸發器中蒸發并快速高效地將電池系統的熱量帶走,從完成對電池系統冷卻的作業。
目前通過直冷的冷卻方式基本在電動乘用車上,典型的如BMW i3(i3有液冷、直冷兩種冷卻方案)。
冷卻系統溫度:-40至80度 精度正負0.3
冷卻介質流量:0-100L/min 精度正負3%
流體循環壓力:0-7Mpa 精度0.01Mpa
新能源電池冷卻系統測試平臺(液冷、水冷)主要應用在新能源汽車的電驅、電機、減速器、充電樁等新產品的水冷系統穩定性測試。恒溫恒壓恒流熱測試(5-85度)、高低溫運行測試(150至-40℃)、電機冷卻水系統(5-30℃)等冷卻測試。應用范圍包括電動汽車、混合動力汽車、航空航天、軍工和科學研究。測功機以水冷為標準設計。個別用戶有油冷式,風冷式。青金制冷專注設備冷卻系統開發設計與制造銷售。根據導熱材料、隔熱、保溫材料、散熱器等用戶需求,此機均可適用以上行業。
冷凍水的壓力和溫度——講解
空調用冷水機組一般是在標準工況所規定的冷水回水溫度12℃,供水溫度7℃,溫差5℃的條件下運行的。對于同一臺冷水機組來說,其運行條件不變,外界負荷一定的情況下,冷水機組的制冷量是一定的。此時,通過蒸發器的冷水流量與供、回水溫差成反比,即冷水流量越大,溫差越小;反之,流量越小,溫差越大。所以,冷水機組工況規定冷水供回水溫差為5℃,這實際上是規定了機組的冷水流量。這種冷水流量的控制就表現為控制冷水通過蒸發器的太力降。
在標準工況下,蒸發器上冷水供回水壓降調定為0.5kgf/cm2。其壓降調定方法是調節冷泵出口閥門開度,和蒸發器供、回水閥門開度。閥門開度調節的原則是:蒸發器出水有足夠的壓力來克服冷水閉式循環系統中阻力;機組在負擔設計負荷的情況下運行,蒸發器進、出水溫差為5℃。此時進、出蒸發器的冷水壓降為0.5kg/cm2左右。
按照上述要求,閥門一經確定,冷水系統各閥門開度大小就應相對穩定不變。即使在非調定工況下運行(如卸載運行)旱,各閥門也應相對穩定不變。應當注意,全開閥門加大冷水流量,減少進、出水溫差的做法是不可取的。這樣做雖然會使蒸發器的蒸發溫度提高,機組的冷量有所增加,但水泵功率也因此而提高,兩相比較得不償失。所以,蒸發器冷水側進、出水壓降控制在49.05kPa(0.5kgf/m2)為宜。
一般來說,冷水供水管上的壓力,只要能夠滿足克服冷水管系統中管道上的陰力損失就可以了,這可以從安裝在冷水泵上的吸入壓力表讀數來判別。然后通過控制冷水泵出水閥的開度,可以調節冷水供水壓力。將出水閥開度關小,則冷水泵背壓提高,通過水泵的流量減少,水泵功率消耗下降,這時蒸發器的供水壓力下降,但該壓力無論如何也不應低于滿足蒸發器供、回水壓降為49.05kPa(0.5kgf/m2)的要求。
為了冷水機組的運行安全,蒸發器出水溫度一般不低于3℃。此外,冷水系統雖然是封閉的,在蒸發器中水側結垢和腐蝕不會像冷凝器那樣嚴重,但從設備檢查維修要求出發,應每年對蒸發器管道的水側和冷水系統的其他管道清洗一次。
【新能源測試冷水機】
其他推薦產品
更多-
新能源測試冷水機