判斷真偽值編碼器,先搞懂這個技術
目前市場上商家宣稱的“值多圈編碼器”,其實有多種內部原理,其中有兩種事實上并不是完整的全行程值編碼。需要了解它們使用的局限性,在哪些場合是不可以使用的。
一、值編碼的定義與意義
1.完整的全行程預先編碼的一性
編碼器內部編碼已預先有大數據編碼,在整個規定的測量行程中,每一個位置是一性的編碼,在使用后不會再產生新的編碼。
2.與歷史無關
與時間軸無關,無需計數過程,任何時間讀取或者不讀取都可以根據數據下游指令,可直接一次輸出與時間軸無關的編碼大數據。
3.的容錯性
無計數過程,無記憶與再讀取過程,也就是意味著無需考慮計數起始點、停電、以及停電后是否再有移動,也無需擔憂在任何時候的干擾,干擾后是否還能恢復到真實的編碼角度信息輸出——所有的編碼預先編好了,不會再產生新的編碼,只與編碼器轉軸運動位置有關(與是否斷電無關),外部的干擾也無法改變原始編碼值。
二、計數器的電子多圈技術
1.一種單圈值編碼,多圈增量計數。在360度范圍內是值的,超過360度后回零,并以計數器的增減來增加多圈編碼器的編碼。也就是多圈數據原始編碼沒有,而是從寄存器里調取并在使用時通過`計數器獲得新的編碼。
2.以時鐘表盤舉例,這種電子多圈編碼器只有一根表針,當經過12點后就回零,在經過12時,數值一下子從大到小,電子計數器根據前后兩次讀取的數值比較(歷史關系比較),由大突變為小(下降沿),邏輯判斷圈數增加了1;數值的由小突變為大(上升沿),邏輯判斷圈數減少了1。計數器寄存。
3.由于我們已經清楚,本文題目上這兩種偽值多圈屬于“電子多圈”計數器性質,不符合上面的第1與第2條,因而不能稱為“值編碼”,我把它們稱為“偽值”。
下面我們對這兩種電子多圈技術的比較,重點將是在”容錯性” 上的比較。
三、電池記憶電子多圈技術的原理及容錯性
1.讀數的可靠性問題
電池記憶多圈技術主要是光學單圈值碼盤,通過兩次先后的讀取,判斷是否過零點分界線。這里光學碼盤的零點刻線是穩定的,分界線清晰的,關鍵是在過零點分界線前的后一次讀數的可靠性,和過零點分界線后的次讀數的可靠性,依賴于這兩次讀數的邏輯關系,而判斷多圈的圈數是增還是減,或者不變。零點分界線的穩定清晰,兩次讀取的讀數準確性,成了這種計數器容錯性的大考量。當突然斷電時或者有較大的干擾時,編碼器的位置正好在零點位置及附近時,兩次讀數比較會產生反向抖動,這個問題就會比較突出。
2.能量管理問題
斷電后,單圈光學碼盤的讀取可靠,需要有穩定的電池電源給光源供電,給感應傳感器供電,而長時間的斷電待機狀態下,備用電池的電能很快就會耗盡。因此,這種技術需要有低功耗電源分配管理技術,既要保證光源與傳感器的供電穩定,又要保持電池能量節約以維持長時間待機,往往采取一種間隙式供電策略。供電時間占空比、供電啟動與暫停所帶來的電源波動對光源與傳感器讀取的影響,供電工作占空比與待機時間的權衡,外部電源供電與內部電池供電的切換時對光源與傳感器讀取的影響,等等。例如突然的斷電,或者開機通電時的電源管理,是否會因供電的抖動,在零點分界線附近的讀數反向抖動,易造成過零點分界線的計圈判斷的失敗。
3.對電池能量的計算
對長時間待機或者電池壽命將盡時,對電池能量需作計算判斷,以報警提示需要更換電池,以及因供電能量的不足而可能讀取并計圈的失敗。
4.電池本身的問題
在編碼器內部的電池因容量較小,待機時間有限。而引線到外部的電池,容量雖然大了,但是引線接插件等故障可能性增加,對于抗振動環境有影響。電池的溫度范圍——不可逆性失效與可逆性供電不穩定。從目前的資料看,儲存與工作溫度不得大于100℃(不可逆失效),可逆性高低溫參數(供電不穩定)沒有看到資料描述。
KT5W-2P2116
I16-SA203
FRONT SCREEN REPLAC
IME08-02BPSZW2S
DSL-1205-G15MC
KT5W-2P2116
S30B- 2011CA
GTB6-N1211S38
WT24-2B220
RZTE-03ZUO-KWBS10
TBS-1BSG10506NM
WL27-3P2430
VTE18-4P2240
HTB18-B1G2AB
C4C- EA0903A10000
GTB6-N1211S38
1070830 MZT7 -03VPO-KU0
DBS60E-THFK02048
WS/WE45-P260S01
KUP-1012-B
1037397 DKS40-EZL0-S03
DFS60B-S1AA04096
WTB9-3P1111S14
IME08-02BPSZTOS
SRS50-HZA0-S39
WL14- 2P430
WTV4-3N1321S49
DKS40- E5L00360
ATM60-P4H13X13
A3M60B- BDPB013X13