詳細介紹
WSZ-1 一體化污水處理設備
WSZ-1 一體化污水處理設備購買找魯盛環保。
各種污水設備齊全,現貨,送貨上門、安裝。
本地有我們安裝人員,安裝、售后更方便、快捷。
活性污泥法是利用好氧微生物與污水混合并曝氣,利用微生物將污水中的有機污染物分解,利用生物絮凝體膠團對無機、有機污染物進行吸附,從而將污染物從被處理水體中分離,達到進行污水凈化處理的目的。傳統活性污泥法凈化水體,主要建立沉淀池、曝氣池、濃縮池等構筑物組成污水處理工藝流程,生活污水進入處理廠區后經過格柵截留大部分漂浮物和懸浮物;在沉淀池中分離可沉淀的無機物和部分有機物;污水進入活性污泥池后經過曝氣裝置與污泥充分混合,利用微生物分解有機物、利用膠團吸附懸浮物和有機物,從而形成新的活性污泥;處理后的混合液經過二次沉淀池進行固液分離,凈化后的水體經過消毒基本達到排放水體的保證,可以進行外排。
活性污泥法在高原生活污水處理中的應用
活性污泥法是目前大多數城市進行污水處理的重要工藝,但由于高原地區的低氧和低溫環境,活性污泥法在高原地區適應情況不佳,存在能耗高、污泥產量多、冬季抗沖擊能力弱的現象,且在低溫環境下運行容易出現凈化后水體質量不達標的現象,這種水體進行外排同樣會對高原地區地表和地下水系造成污染和破壞,且增加了高原生活污水處理的成本,對可持續發展無益。活性污泥法雖然單獨使用的效果有所欠缺,但其不失為一種良好的污水處理技術,可以通過與其他對溫度、氧氣量依賴性不強的水處理技術進度搭配,提高高原地區生活污水處理工藝的效果和抗沖擊能力。
低溶解氧(DO)活性污泥技術
降低污泥量
活性污泥的低氧工藝是一種較為新型的水處理技術,尚未能夠得到嚴格的定義,低氧工藝將好氧、厭氧、兼氧環境合為一體,利用低溶解氧環境下活性污泥出現絲狀菌導致污泥膨脹的特性,建立絲狀菌的生物濾網,利用濾網的過濾作用和生物降解作用去除水中細小的懸浮物和有機物,有效改善處理后水體的質量,且絲狀菌不會持續增殖,降低了爆發惡性污泥膨脹的幾率,對維持活性污泥污水處理系統穩定性有很大作用。
去除有機物量
在低氧環境下,當溶解氧濃度在1mg/L時,污泥產量有大幅度降低,因為在不同溶解氧濃度條件下,微生物對有機物降解的特性有較大差異,例如溶解氧濃度大于2mg/L時,微生物以溶解氧作為電子受體,被處理水體中大部分有機物被氧化為無機物,微生物從中獲取能量用于增殖;厭氧條件下,作為電子受體的不再是微生物自身,而是以碳氮硫等有機物為電子受體,進行不*的氧化反應;當溶解氧濃度在1mg/L時,囊括了好氧、厭氧兩種氧化反應,兩種反應同時進行,不僅污泥產量有所降低,有機物去除效果也穩定在94%左右。
脫氮除磷
活性污泥法過程中溶解氧濃度低會影響硝化反應的進行,但會促進硝化反應與反硝化反應同步的狀態生成,節省了對氧氣量的消耗,又不會影響處理工藝中脫氮的效果。在常規活性污泥法中硝化反應和反硝化反應是兩個不同的步驟,但當溶解氧濃度在1mg/L時,硝化反應與反硝化反應可以在同一個反應空間內同時存在,因為溶解氧濃度從微生物與污水混合絮狀物中心到邊緣逐漸升高,氨氮由絮狀物外向內的過程是硝化反應到反硝化反應的過程,且這個過程較短,形成硝化反應與反硝化反應同步的狀態,溶解氧濃度上升或下降都會打破這個平衡。除磷的原理與脫氮原理相似,在絮狀物邊緣進行吸磷,在絮狀物中心進行釋磷。
與生物轉盤相結合
菌種與生物膜
高原地區冬季低溫環境下,活性污泥活性弱,對水處理的效果波動性大,因此單獨設置活性污泥法不能良好的對擊進行抵御,采用生物轉盤與活性污泥進行搭配的工藝可以提高水處理技術的適應性和抗沖擊能力,因為生物轉盤中菌種bacillus(芽孢桿菌)能夠適應低溫環境,在高原地區低溫環境中具有優勢。生物轉盤的孔隙率在97%以上,比表面積較大,但因采用密度較小的材料制成且不吸水,因此生物轉盤運行過程中對電能的消耗較小;生物轉盤通過bacillus菌種和其他微生物共同生長發育在表面形成一層膜狀生物污泥,也就是被稱為生物膜的物質。污水與生物轉盤接觸,微生物和菌種利用有機物作為營養物質,進而對污水進行凈化處理;微生物和菌種需要的氧氣通過生物轉盤的轉動獲取,當轉盤旋轉體離開水面時,生物膜可以透過水層吸收空氣中的氧氣,當轉盤進入污水中時,微生物對污水中的有機物進行分解,不斷在生物轉盤轉動過程中形成好氧和厭氧環境,不斷在代謝過程中分解有機物。
生物轉盤轉速
在生物轉盤與活性污泥相結合的水處理工藝中,生物轉盤的轉速對于處理后水體質量有較大影響,轉速決定了生物轉盤中微生物污水的接觸時間和溶解氧量,當轉速過慢時,生物轉盤的厭氧環境大于有氧環境,不利于有機物的去除;當轉速過快時又容易引起生物膜的脫落,消耗大量能量。經過試驗可知,當生物轉盤轉速在每分鐘4~8r之間時,能夠滿足對氨氮的去除,又不過早脫落生物膜;當生物轉盤轉速超過每分鐘6r時會使總氮的去除效率下降;而對于磷的去除效率則是在轉速為每分鐘3~4r時zui高,因此生物轉盤應當設置為每分鐘4r。
生物模塊技術
活性污泥法是傳統的生物水處理技術。在此技術的基礎上,發展演變了許多廢水生物處理方法,諸如:SBR、CASS等,使其在技術上不斷完善,但如何抵御沖擊負荷和有毒物質的侵害,提高有機物的降解效率,以及保證穩定可靠的運行依然是環保專家們研究的課題。研究中發現在處理設備中放入一種特制的生物模塊是解決上述問題的一種良好途徑。生物模塊是在大量的實驗基礎上研制生產的一種特別適宜微生物繁衍的復合材料。這種多孔材料具有很大的比表面積和優良吸附作用,表面材料包括親水及憎水組分,為微生物提供了ji佳的生長環境,易持膜,模塊上生長高濃度的活性生物菌可達2mm厚;微物生量大,且分布均勻,具有廣譜性。由于微生物不會流失,表面上微生物受沖擊或毒害時,內部微生物會很快繁殖或再生掛膜,使其運行管理非常簡單。即使在停工檢修后,生物膜塊表面的膜已干裂,重新投入使用會很快啟動。這種生物膜塊既可用于厭氧生物處理又可用于好氧生物處理。
模塊化廢水處理系統
加入生物膜塊的廢水處理系統可依據進水的水質分為厭氧生處理系統和好氧生物處理系統。通常當廢水的CODcr值在2500/mg/l以上時,可采用厭氧生物處理系統。zui高進水CODcr值可達12000mg/l,經過厭氧生物處理的后的廢水,可采用好氧生物處理系統;當廢水的CODer值在2500mg/l以下時可直接采用好氧生物處理系統。
模塊化厭氧生的處理系統
厭氧生物處理是一個封閉的循環反應塔內進行,在塔內按規則安裝生物模塊,組成固定床結構。廢水在自下而上通過生物模塊固定床時,廢水中的有機物被吸附生長在模塊上的微生物轉化為以甲烷為主的生物氣,生物氣通過專門的收集系統收集利用。該系統在廢水PH值為6.5-7,溫度為32攝氏度左右時,可以安全高效地運行。
其主要特點如下:
高的有機物降解率;
生物氣中甲烷含量高,可再利用;
系統抗沖擊載荷高,抗毒性強;
大空間負荷可達40kgCODcr/m3。d;
消耗藥劑量少,動力消耗小,運行費用低;
自動化程度高,運行穩定可靠,維修量小;
占地面積小。
廣泛應用于飲料制造業、釀酒業、化學工業、屠宰業、乳品制造業等領域的高濃度的生產廢水治理。
好氧生物處理系統
好氧生物處理系統是在傳統的SBR技術基礎上研究開發出來的一種新型加有生物模塊的生物好氧處理系統。單元結構的生物模塊 直排布在反應器內,氣水可順利通過其中通道,保證了系統的高效穩定工作。二者用于啤酒廢水治理的技術比較 。
主要特點如下:
1.*固定床生物膜塊結構,提高了反應器的性能;
2.新型曝氣頭的采用,大大增強了好氧效果;
3.有機污染物降解率高,可使廢水達標排放;
4.抗沖擊載荷、抗毒性能力強;
5.結構緊湊,節省了二沉池,占地面積小;
6.自動控制程度高,操作維護簡單。
該系統可直接作為低濃度有機廢水的二級處理,亦可作為厭氧生物處理的后續處理系統。使出水達標排放。廣泛適用于釀酒業、制糖業、造紙業、化學工業和飲料、乳品加工業的生產廢水治理。
SND脫氮原理
傳統的生物脫氮是根據脫氮過程的兩階段理論,將好氧硝化與缺氧反硝化分置于2個獨立的反應器內進行。 而SND則是在同一個反應器內直接實現氨氮到氮氣的轉化,將脫氮過程的2個反應階段由宏觀空間(時間)上的好氧池與缺氧池,轉化為微觀空間上的微生物絮體表層與內部,并通過運行參數的調整使污泥表層與內部分別實現硝化與反硝化的反應條件,從而達到脫氮的目的。 由于受到傳質阻力的影響,微生物絮體由外至內存在溶解氧和COD的質量濃度變化梯度,依次形成了擴散區、好氧區和缺氧區。微生物絮體表層由于溶解氧質量濃度較高,以硝化細菌為主,主要發生有機物和氨氮的氧化過程;微生物絮體內部由于氧氣的大量消耗以及傳質阻力的影響,形成缺氧區,反硝化細菌利用傳遞來的有機物反硝化脫氮。懸浮填料屬于分散式填料的一種,一般用聚乙烯、聚丙烯或聚氨酯等特制塑料或樹脂制成[,形狀規則,多為立方體或顆粒狀。 懸浮填料內部孔隙率較大,比表面積大,極大地增加了微生物的附著面積,有利于生物膜的形成,使系統的抗沖擊負荷能力顯著提高。 懸浮填料脫氮原理與微生物絮體類似,隨著污泥質量濃度的增大,附著生長的生物膜內層產生缺氧或厭氧環境,為SND脫氮提供了有利條件。
懸浮填料強化脫氮技術污泥形式和微生物特性
微生物是污水處理的主力軍,因此反應器內生物量的多少直接影響到污染物的去除效果。 懸浮填料由于其內部孔隙的存在,有利于缺氧環境的形成,且比表面積較大,為反硝化細菌的生長提供了更大的空間。 另外,填料表面的微生物主要以生物膜的形式存在,而常規活性污泥法反應器內的污泥處于游離狀態,前者對營養物質的捕獲能力遠遠高于后者,加之懸浮填料處于流化狀態,在水流剪力的作用下,老化的生物膜能夠及時脫落,始終保持較高的代謝活性,從而使反應器在較低的碳源條件下仍能保持較好的反硝化效果。向活性污泥法中投加懸浮填料能在 很大程度上增加反應器內的總生物量和種類,改善其存在形式以及傳質方式,大大提高凈化效率和處理能力。
懸浮填料由于其巨大的比表面積和內部孔隙的存在,能夠吸附大量的絲狀菌,在強化污染物凈化能力的同時,控制污泥膨脹及上浮,使系統抗沖擊負荷能力顯著提高。 同時,反應器內生物固體平均停留時間較長,有益于自養微生物的生存,還會形成大量的輪蟲、鐘蟲、累枝蟲等原生動物和后生動物,有利于水質的進一步提升。
懸浮填料強化脫氮技術的應用形式
向傳統活性污泥法中投加懸浮填料,能夠強化脫氮能力,使氨氮、總氮去除率明顯提高,并且與傳統活性污泥法相比,在低溫下仍能保持較好的氨氮去除效果。向傳統AO工藝中投加懸浮填料與CASS工藝相比,在低溫低曝氣量條件下仍能保持較好的污染物去除效果,并且具有運行管理簡單、投資造價低、占地面積小等優勢。向傳統的A2/O生物池中投加聚乙烯懸浮填料,投配比為20%,總氮和總磷去除率均有顯著提升,當污泥齡為8h 時,相應去除率zui高可達75%和91.4%。
通過向氧化溝好氧段投加懸浮填料探究溶解氧含量、污泥回流比和污泥齡對脫氮效果的影響,結果表明,當溶解 氧含量為0.8~1.2 mg/L,污泥回流比為75 %~100 %,污泥齡為10~15d時,出水 COD、氨氮和總氮可達到GB 18918—2002《城鎮污水處理廠污染物排放標準》的一級A 標準。
為了探究低C/N比生活污水的處理方法,以聚丙烯作為懸浮填料投加到 SBR反應器內,發現在低C/N比下,反應器仍能保持較高的生物量以及較好的TN去除效果。與常規SBR反應器相比,懸浮填料SBR反應器對水中DO利用率更高,低曝氣量下仍能保持較好的處理效果。 因此,懸浮填料的投加能夠顯著提高常規SBR反應器的耐沖擊負荷能力,強化脫氮效果,且在外在條件發生波動后仍能保持較好的污染物去除性能。
通過向平板膜生物反應器中投加聚丙烯多面空心球懸浮填料,使得總氮、總磷去除效果和穩定性顯著增強。 另外,懸浮污泥生物膜與懸浮污泥之間存在競爭關系,從而使污泥產量明顯降低。 通過對比普通膜生物反應器和投加多孔柔性聚氨酯懸浮填料的復合式膜生物反應器,發現懸浮填料的投加能夠形成微湍流,加大流體運行的不穩定性,有效地改善了膜生物反應器的過濾性能,使膜污染速率下降30%以上。
懸浮填料強化脫氮在實際運用中存在的問題
雖然懸浮填料的投加能夠強化反硝化脫氮效果,但仍然存在一些問題:
1)由于懸浮填料內部孔隙的存在,長時間運行后會產生較多沉積物堆積,導致生物膜活菌率降低;
2)對于懸浮填料生物膜來說,雖然比表面積較大, 但液相基質與固相微生物之間的傳質阻力較大;
3)受反應器流態影響較大,與活性污泥形成的生物絮凝體相比,懸浮填料表層的生物膜在較大的水流剪力作用下易脫落,無法形成穩定的生物膜結構;
4)目前,由于原材料價格較高,導致前期投資較大。
曝氣生物濾池是一種膜法生物處理工藝,微生物附著在載體表面,污水在流經載體表面時,通過有機營養物質的吸附、氧向生物膜內部的擴散以及生物膜中所發生的生物氧化等作用,對污染物質進行氧化分解,使污水得以凈化。 生物膜的吸附作用主要是由于在生物膜的表面附著一層薄薄的水層,水中的有機物被生物膜所氧化(其濃度要比濾池進水中有機物的濃度低很多),當廢水在濾料表面流動時,有機物就會從運動著的廢水中轉移到附著在生物膜表面的水中去,被生物膜所吸附。空氣中的氧通過水層而進入生物膜。生物膜上的微生物在氧的參與作用下對有機物進行分解和機體的新陳代謝,產生了包括二氧化碳等無機物,它們又沿著相反的方向,即從生物膜經過附著水層排到流動著的廢水及空氣中去。生物濾池中廢水的凈化過程是很復雜的,它包括廢水中復雜的傳質過程。生物膜是由微生物細胞組成的復雜混合物的微生態系統,細胞鑲嵌在胞外聚合物的基質中,并且附著在固體表面。