詳細介紹
70t/d地埋式一體化生活污水處理設備
新型產品,實力廠家。
魯盛水處理設備有限公司專業生產70t/d地埋式一體化生活污水處理設備。
質量有保障、價格更優惠,是您合適的選擇。
我們可以為您報價、出方案、出施工圖紙、做技術指導、技術培訓、設備維修維護等解決各方面的問題。
水化技術是利用比面積在10~50 m2/g 低Si聚合度的層狀硅酸鈣具有很強的不飽和表面電位,高密度的不規則氫鍵,從而對水體中各種污染物進行包括。如圖所示,水體中的溶解性有機污染物在水體中進行無規則運動時,水化藥劑具有的高效比表面積能夠將污染物專有吸附在其中,并通過水化過程中形成的“致密”小顆粒將污染物包裹于其中,隨著包裹過程的進行,水化顆粒表面污染物的濃度不斷降低,水體中高濃度的污染物并不斷遷移至水化顆粒表面,伴隨著水化顆粒包裹過程的進行,溶液中高濃度的污染物不斷遷移至水化顆粒所具有的納米顆粒中,終降低水體中的污染物濃度。實踐表明:水化混凝劑對各種廢水都有強大的適應能力,即使是難降解廢水也能夠達到40%以上的預處理效果。
2末端處理
末端保障藥劑選擇了聚鋁、PAM和水化復合藥劑作為混凝處理藥劑。由于普通聚鋁、聚鐵不容易形成穩定的絮體,形成的絮體分散,且不容易沉降,而水化藥劑展現了一定的優勢,它模擬了硅酸鹽固化過程中對污染物的截留作用,能夠適應水體污染物降解的處理。在水體中,水化絮體能夠克服顆粒自由運動所具有的布朗運動,所形成的絮體具有高效吸附的表面,形成納米結構的松散絮體。
通過終沉池前設置混凝反應池,投加藥劑,能夠在小設備改動的情況下實現良好的混凝處理,對削減COD負荷以及保障生化系統的穩定運行具有很大的作用。
深度處理采用水化復合藥劑,經過高效生化水處理之后,焦化廢水工藝末端存在一些難以生化降解的物質,包括鈉鹽、殘留的小分子化合物。水體中帶負電荷的膠體含量日益減少,出水基本澄清,因此常規混凝劑對生化工藝出水處理效率并不很理想。
混劑集合了陽離子的靜電壓縮作用和陰離子的吸附作用,并能夠一定溶液中形成兩性的顆粒,對水體中殘留的溶解性有機物進行高效去除。從而保證出水能夠達到排放要求。
污泥處置方法
污水處理過程中產生的污泥,有機物含量較高,并且很不穩定,易腐化,含有大量病菌及寄生蟲,若不經妥善處理和處置將造成二次污染,必須進行必要的污泥處理和處置,污泥處理的要求是:
a.減少有機物;
b.減少污泥體積,降低污泥后續處置費用;
c.減少污泥中有毒物質;
d.利用污泥中可用物質,變害為利;
e.因選用生物脫氮降磷工藝,盡量避免磷的二次污染
污泥若采用消化處理,需增加消化池、加熱、攪拌和沼氣處理利用等一系列構筑物及設備,使投資增加。因此,建議本工程近期污泥不進行消化處理,直接濃縮、脫水。
一體化兼氧MBR系統設計
膜生物反應器為傳統活性污泥法與膜分離技術的結合。活性污泥中微生物對原水中有機物進行生物降解以達到去除有機物的目的。膜分離單元代替了傳統工藝中的二沉池,可大大減小了占地面積。設備主體MBR膜,應具有適應低濃度污水的性能,其化學需氧量(COD)適應范圍宜為100mg/L~500mg/L,總氮(TN)宜≤35mg/L;總磷(TP)宜≤10mg/L。且設備主題MBR膜系統內微生物,在貧營養條件下(BOD<15mg/L)應能夠有不少于兩周的存活期。一體化膜生物反應器為集約型一體化處理設備,包含進水區、處理區、出水區及設備放置區。
膜分離單元設計
膜組件選擇
(1)膜材料
膜材料分為無機膜材料與有機膜材料兩種。常見有機膜材料為PE、PS與PES等,而無機膜材料多為一些金屬材料、金屬氧化物以及陶瓷材料。從性能上講,有機膜材料工藝趨于成熟,膜孔徑和形式多樣,造價低廉,但使用過程易受污染,使用壽命不長;無機膜材料具有良好的化學穩定性,能耗較低,但制造成本較高,實際制備工藝也較難。因此,本工程采用的膜材料為改性后的有機膜。
(2)膜形式
根據膜組件的不同,應用在浸入式MBR中的膜為以下兩種:中空纖維膜與平板膜。中空纖維膜在國內的大型的市政工程中應用較多,具有裝填密度高、體積小、工藝簡單、價格低廉等優點,但是對于預處理的要求卻很高,阻力損失較大,常見的中空纖維膜有簾式、束狀、柱狀3種;平板膜的實際應用較少,有污泥濃度高、抗污堵能力強等優點,但是也存在著裝填密度低、投入資金量較大等缺點,主要分為板式和盤式兩種構造形式。本工程應用的是浸入式MBR膜的中空纖維膜。
(3)膜孔徑
根據膜孔徑的不同,通常將MBR膜分為超濾膜和微濾膜兩種形式。兩者之間并沒有嚴格地區分定義,在MBR技術當中,通常將0.1μm作為分界點,膜孔徑在0.01μm~0.1μm之間的為超濾膜,膜孔徑在0.1μm~0.4μm之間的稱為微濾膜。兩者的孔徑雖然有所不同,但是過濾作用的是截留部分構成的動態膜,截留去除的貢獻較大,從實際的工程應用情況來看,兩者之間的工藝效果并沒有太大的差別。
膜分離單元工藝參數
(1)膜通量
膜通量是指單位時間內透過單位膜面積的水量,是衡量膜分離性能的重要參數。在本單位的MBR中,膜通量一般為0.5m3/(m2˙d),高能達到0.75 m3/(m2˙d)。在實際工作中,膜通量會隨著使用時間的增長而減小,但經過特殊的清洗處理后還能恢復到初始狀態。從數學的角度上講,膜通量是一個變量。膜通量主要包括以下3種:設計平均、設計峰值與大實際值。設計膜通量是規模處理下設計膜面積上的通量;設計峰值膜通量是水量峰值條件下設計膜面積上的通量;大實際膜通量為MBR(膜生物反應器技術)下的總產水量。
預處理階段:廢水懸浮物濃度較高,廢水首先要經過物理處理階段。廢水流經細隔柵池,有效去除細小纖維素等不容性懸浮物,減輕后續生化處理的負荷;同時,考慮生產廢水排放的不連續和水質變化大的特點,在細隔柵池的后面設置了一個調節池,在調節池內設置攪拌功能,以均衡水質水量。
生化處理階段:由于可生化性較好,因此本工程決定采用好氧生化處理工藝;為降低成本,提高處理效果,縮短啟動周期,采用HCF深層曝氣工藝。
混凝沉淀:HCF生化出水經過混凝沉淀后進一步去除殘留的污染物,保證廢水達標排放。
工藝系統介紹
高負荷HCF系統
高負荷HCF系統是一種好氧處理系統, HCF反應器采用射流曝氣加鼓風曝氣形式供氧,具有容積負荷高,處理效果好的優點,能大幅提高處理效率。系統主要包括:集成反應器、兩相噴頭、氣浮池以及配套的管路和水泵等。集成反應器為圓形容器,其外筒兩端被封閉,連接著各種管道;內筒兩端開口,兩相噴頭安裝在反應器上部的正中央。循環水泵提升高壓水流經噴頭射入反應器,由于負壓作用同時吸入大量空氣。水流和氣流的共同作用又使噴頭下方形成高速紊流剪切區,把吸入的氣體分散成細小的氣泡。富含溶解氧的混合污水經導流筒達到反應器底部后,又向上返流形成環流,再經剪切向下射流,如此循環往復運行。于是,污水被反復充氧,氣泡和微生物菌團被不斷剪切細化,并形成致密細小的絮凝體。