自動化調節閥在化工應用在生產過程自動化中,用來控制流體流量的調節閥已遍及各個行業。在化工行業的過程控制系統中,作為較終控制過程介質各項質量及安全生產指標的調節閥,在穩定生產、優化控制、維護及檢修成本控制等方面都起著舉足輕重的作用。下文將就調節閥在應用中須注意的幾個問題,談一些自己的拙見,以期與大家共同探討。
調節閥是通過改變節流方式來控制流量的,它既是一種有效的調節手段,同時又是一個會產生節流能耗的部件。隨著裝置高負荷運行,調節閥的腐蝕、沖刷、磨損、振動、內漏等問題不斷發生,從而導致調節閥的使用壽命縮短、工作可靠性下降、進而引起工藝系統和裝置的生產效率大幅度下降,嚴重時可以導致全線停車。這在視質量和效益為生命的企業管理中尤為重要和緊迫。因此,如何選擇和安裝好調節閥,使調節閥在一個高性能狀態下運行將是一個很關鍵的問題。
選擇調節閥時,首先要收集完整的工藝流體的物理特性參數與調節閥的工作條件,主要有流體的成份、溫度、密度、粘度、正常流量、較大流量、較小流量、較大流量與較小流量下的進出口壓力、較大切斷壓差等。在對調節閥具體選型確定前,還必須充分掌握和確定調節閥本身的結構、形式、材料等方面的特點,而技術方面需要重點考慮流量特性、壓降、閃蒸、氣蝕、噪聲等問題。
一、流量特性的選擇
調節閥的流量特性是指介質流過閥的相對流量與相對位移間的關系。選擇的總體原則是調節閥的流量特性應與調節對象特性及調節器特性相反,這樣可使調節系統的綜合特性接近于線性。選擇通常在工藝系統要求下進行,但是還要考慮很多實際情況,現分別加以說明。
自動化調節閥在化工應用
1、直線性流量調節閥
直線性流量特性是指調節閥的相對流量與相對位移成直線關系,即單位位移變化所引起的流量變化是常數。選用直線性流量特性閥的場合一般為:①差壓變化小,幾乎恒定;②工藝系統主要參數的變化呈線性;③系統壓力損失大部分分配在調節閥上(改變開度,閥上差壓變化相對較小);④外部干擾小,給定值變化小,可調范圍要求小的場合。
2、等百分比特性調節閥
等百分比流量特性也稱對數流量特性。它是指單位相對位移變化所引起的相對流量變化與此點的相對流量成正比關系。即調節閥的放大系數是變化的,它隨相對流量的增大而增大。優先選用等百分比特性閥的場合為:①實際可調范圍大;②開度變化,閥上差壓變化相對較大;③管道系統壓力損失大;④工藝系統負荷大幅度波動;⑤調節閥經常在小開度下運行。
除了以上兩種常用的流量特性之外,還有拋物線特性和快開特性等其他流量特性的調節閥。在密封結構上,若流量特性精度要求高,則可選用高精度流量特性的金屬密封型,而軟密封型精度較低。
3、調節閥壓降的系統考慮
調節閥作為過程控制系統中的終端部件,是較常用的一種執行器。按過程控制系統的要求,調節閥應具有在低能量消耗的狀態下工作,且能充分與系統匹配的工作特性。但是在調節閥的使用中這兩個要求是不能同時滿足的,甚至是互相矛盾的。在要得到同樣的流量的情況下,選擇一只較小口徑的調節閥,雖然其他阻力不變而總的阻力必然比較大,形成大的系統總壓降。假若物流的推動力是由泵產生,就意味著必須選功率大一些的泵和電機,這樣必然帶來大的能耗。
當管道系統中介質的流速增加時,流體通過管道上的各種安裝部件時產生的流體壓降也會發生一系列的動態變化,作為管道流體控制主要部件的調節閥所引起的流體壓降是一個很重要而又容易被忽略的因素,我們在分析與調節閥有關的系統問題時,不僅要考慮到調節閥本身的問題,而且也要考慮到調節閥的壓降對系統動態平衡的影響。
4、調節閥的閃蒸和氣蝕
在調節閥內流動的液體常常出現閃蒸和氣蝕兩種現象。它們的發生不但影響口徑的選擇和計算,而且將導致嚴重的噪聲、振動、材質的破壞等。在這種情況下,調節閥的工作壽命會大大縮短,對此在選型使用中要尤其重視。
正常情況下,作為液體狀態的介質,流入、流經、流出調節閥時均保持液態。閃蒸作為液體狀態的介質,流入調節閥時是液態,在流經調節閥中的縮流處時,流體的壓力低于氣化壓力,液態介質變成氣態介質,并且它的壓力不會再回復到氣化壓力之上,流出調節閥時介質一直保持氣態。
閃蒸就象一種噴沙現象,它作用在閥體和管線的下游部分,給調節閥和管道的內表面造成嚴重的沖蝕,同時也降低了調節閥的流通能力。氣蝕作為液體狀態的介質,流入調節閥時是液態,在流經調節閥中的縮流處時流體的壓力低于氣化壓力,液態介質變成氣態介質,隨后它的壓力又回復到氣化壓力之上,較后在流出調節閥前介質又變成液態。可以根據一些現象來初步判斷氣蝕的存在,當氣蝕開始時它會發出一種嘶嘶聲,當氣蝕發展到*穩定時,調節閥中會發出嘎嘎的聲音,就像有碎石在流過調節閥時發出的聲響。氣蝕對調節閥及內件的損害也是很大的,同時它也降低了調節閥的流通效能,就像閃蒸一樣。因此,我們必須采取有效的措施來防止或者較大限度地減小閃蒸或氣蝕的發生:
自動化調節閥在化工應用(1)盡量將調節閥安裝在系統的較低位置處,這樣可以相對提高調節閥入口和出口的壓力;
(2)在調節閥的上游或下游安裝一個截止閥或者節流孔板,以改變調節閥原有的安裝壓降特性(這種方法一般對于小流量情況比較有效);
(3)選用專門的反氣蝕內件也可以有效地防止閃蒸或氣蝕,它可以改變流體在調節閥內的流速變化,從而增加了內部壓力;
(4)盡量選用材質較硬的調節閥。因為在發生氣蝕時,對于這樣的調節閥,它有一定的抗沖蝕性和耐磨性,可以在一定的條件下讓氣蝕存在,并且不會損壞調節閥的內件。相反,對于軟性材質的調節閥,由于它的抗沖蝕性和耐磨性較差,當發生氣蝕時,調節閥的內部構件很快就會被磨損,因而無法在有氣蝕的情況下正常工作。
總之,目前還沒有什么工程材料能夠適應嚴重條件下的氣蝕情況,只能針對客觀情況來綜合分析,選擇一種相對比較合理的解決辦法。
5、調節閥的噪聲分析
氣蝕和噪聲是調節閥在控制高壓差流體中的兩大公害。調節閥上的噪聲更是石油化工生產中的主要污染源。在使用中除需選用低噪聲結構的調節閥外,改變閥的操作條件更是消除或降低氣蝕和噪聲的根本方法。調節閥在工作時,應注意它的噪聲情況,分析好噪聲的產生機理可以更好地監視調節閥的工作狀態和有效處理所發生的問題,下面通過舉例說明。
(1)機械類振動——如當閥芯在套筒內水平運動時,可以使閥芯與套筒的間隙盡量小或者使用硬質表面的套筒。
(2)固有頻率振動——如閥芯或者其它的組件,它們都有一個固有振動頻率,對此,可以通過專門的鑄造或鍛造處理來改變閥芯的特性,如有必要也可以更換其他類型的閥芯。
(3)閥芯不穩定性——如由于閥芯振蕩性位移引起流體的壓力波動所產生的噪聲,這種情況一般是由于調節回路執行器等的阻尼因素引起的,對此可以重新調節阻尼系數或者在閥芯位移方向上加上減振設施。
(4)介質的力學流動性——介質在管道或者調節閥中流動時,也會發出噪聲,對于這種情況,這里不作具體闡述(氣蝕也會產生噪聲)。
二、結語
調節閥的選型和應用是一個專業性強、涉及技術領域廣的系統工作,我們不僅要在理論上充分了解它的各種特性,而且要結合實際使用經驗來綜合分析判斷,做到理論和實踐科學地結合起來,才可以做好這個工作。
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,化工儀器網對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。