當前位置:北京理加聯合科技有限公司>>技術文章>>2100 | 不同土壤水分條件下土壤水與植物莖木質部水的同位素偏差研究
2100 | 不同土壤水分條件下土壤水與植物莖木質部水的同位素偏差研究
【摘要】
土壤含水量的時空異質性影響著土壤水和植物莖木質部水的同位素組成。然而,土壤水分條件對廣泛報道的土壤水-植物莖木質部水同位素偏差的影響尚缺乏系統地評估。為此,本研究連續兩年在兩個土壤水分條件不同的樣地測定了檸條莖木質部水和土壤水的δ2H和δ18O值(利用全自動真空冷凝抽提系統LI-2100,北京理加聯合科技有限公司)提取土壤和植物莖木質部中的水分,然后進行同位素測量)。結果表明,在較濕潤的樣地1,莖木質部水與土壤水在兩年中都表現出明顯的同位素偏差(兩者的重疊率<20%),土壤水-莖木質部水lc-excess差值(Δlc-excess)平均值為10.7‰,莖水SW-excess的平均值為?9.1‰。但在干旱年,莖木質部水與土壤束縛水高度匹配。在土壤含水量相對較低的樣地2,莖木質部水與土壤水在濕潤年發生同位素偏移,兩者的重疊率為20%,Δlc-excess和SW-excess平均值分別為13.7‰和?11.8‰。有趣的是,在干旱年份,莖木質部水與土壤水同位素的重疊率達到97%。樣地2土壤含水量與Δlc-excess值呈正相關,與SW-excess值呈負相關。本研究表明土壤束縛水與檸條莖木質部水同位素之間較高的匹配度,支持了“兩個水世界"假說。土壤水-植物莖木質部水同位素偏差極有可能與土壤含水量驅動的土壤水同位素異質性密切相關。該研究結果闡明了不同水分條件下植物莖木質部水和土壤水同位素信號的變化,有助于更好地理解植物在異質土壤中如何吸收水分。
【研究區域】
該試驗是在中國黃土高原北部六道溝小流域 (38°46′-38°51′N,110°21′-110°23′E)進行。
【研究方法】
(1) 土壤束縛水同位素的計算
本研究中,將張力計在?60 kPa壓力下收集到的水分視為土壤移動水,而壓力值大于?60 kPa時收集到的水分則視為土壤束縛水。在土壤水分特征曲線上,土壤水吸力為60 kPa時對應的土壤含水量被認為是土壤束縛水的最大含水量。土壤水的質量含水量可以通過野外試驗測定。土壤水含水量與土壤束縛水最大含水量的差值為土壤移動水的含水量。最后,根據實測的土壤水與土壤移動水的同位素值,可以計算出土壤束縛水的同位素值。
式中,δLMW 、δBW、δMW分別為土壤束縛水、土壤水和土壤移動水的同位素值,θLMW、θBW、θMW分別為土壤束縛水、土壤水和土壤移動水的土壤含水量。
(2) lc-excess值
按照Landwehr and Coplen(2006)的方法,計算了土壤水和植物莖木質部水的lc-excess值,并利用兩者的差值(Δlc-excess)評估同位素偏差。Δlc-excess值越大,表明植物莖木質部水與土壤水同位素偏差越大。
式中,下標“s"代表樣本,a和b分別是區域降水線LMWL的斜率和截距。
(3) SW-excess 值的計算
按照Barbeta et al.(2019)的方法,計算了檸條莖木質部水的SW-excess值,用以評估檸條莖木質部水與土壤水同位素之間的偏離程度。若SW-excess為負值,則在δ2H-δ18O雙同位素圖中莖木質部水位于土壤水的下方。SW-excess值越負,表明檸條莖木質部水與土壤水同位素偏差越大。
式中,下標“s"代表檸條莖木質部樣本,abw和bsw分別是2018-2019年每個月份土壤水線的斜率和截距。
(4) 重疊面積法評估植物-土壤水同位素偏差
利用R軟件中的SIBER(Stable Isotope Bayesian Ellipses)模型計算了植物莖木質部水和土壤水的重疊面積,最后給出兩者的重疊面積與莖木質部水面積的比值(%)。較高的比值意味著植物莖木質部水與土壤水同位素重合度高。
【結果】
圖1 研究期間植物水和土壤水δ18O和δ2H值的標準橢圓(95% 置信區間)。
圖2 樣地1-2土壤水-莖木質部水分lc-excess差值(Δlc-excess)及莖水SW-excess值。
圖3 不同吸力下土壤水分類型示意圖及樣地1-2水分特征曲線。
圖4 植物水和不同移動性的土壤水δ18O和δ2H值的標準橢圓(95% 置信區間)。
圖5 土壤含水量與(a)Δlc-excess和(b)SW-excess的關系。
【結論】