通過利用個體多巴胺能(DA)神經元空間轉錄組學解決帕金森病之謎
在阿爾茨海默病之后,帕金森病是第二常見的進行性神經退行性疾病。在shou發癥狀出現之前,中腦中高達70%的多巴胺釋放神經元已經死亡。本文描述了如何使用現代激光顯微切割(LMD)方法幫助解決帕金森病之謎。研究涉及在空間背景下分離和分析神經元。這些細胞來自帕金森病患者的死后黑質組織樣本,以便深入了解該病的分子機制。
帕金森病是什么?
帕金森癥(PD)是一種神經退行性疾病,會降低受影響個體的生活質量。著名運動員muhanmodei·阿里和演員邁克爾·J·福克斯就是患有或曾經患有帕金森癥的著名例子。該病的成因多種多樣,例如遺傳(邁克爾·J·福克斯的情況)或物理影響(muhanmodei·阿里的情況)。到目前為止,治療該病主要側重于癥狀的緩解,主要通過服用 L-DOPA(多巴胺前體)藥物來實現。
該病的根本原因是中腦或黑質(SN,黑色物質)中一群多巴胺能(DA)神經元的選擇性死亡[1,2]。在超過60%的多巴胺能神經元損失后,才可見到第一個表型。因此,基于年齡和性別匹配的對照,對死后帕金森病患者的中腦組織進行比較,就像是拿蘋果和香蕉進行比較。因此,必須逐一分析黑質致密部中幸存的多巴胺能神經元,以發現這些特定多巴胺產生細胞之間的差異。
關于該病的起源有多種理論。因此,帕金森病可以比作一個拼圖。已經找到了許多碎片,并且已經組合了一些碎片,但仍然沒有人知道整個畫面是什么樣子。一些碎片的重要性尚未確定,也沒有人知道在能夠清楚地了解帕金森病之前,還需要找到多少碎片才能呈現完整的畫面。
空間背景下的
多巴胺能神經元分離與帕金森病研究
使用的典型工作流程和實驗程序
由于帕金森病通常在較晚的年齡出現,因此用于研究帕金森病的動物模型相當罕見,因此,嚙齒類(小鼠和大鼠)模型沒有與人類相似的明確表型。在猴子中進行的研究,其中帕金森病可以通過藥物引入,即使在較年輕的動物中,也是昂貴的,并且需要許多研究人員無法獲得的特殊條件。除了這些挑戰之外,單個神經元的活性通常通過電生理學來研究。這種方法需要活腦組織切片,而這是無法從人身上獲取的。因此,需要一種不同的方法來選擇性分析多巴胺能(DA)神經元。出于這個原因,激光顯微切割(LMD)方法發揮了作用[3]。
圖1:用于帕金森病研究的實驗流程圖:從人類死后帕金森病大腦和對照組個體的黑質(SN)DA神經元中,通過紫外線激光顯微切割(UV-LMD)和定量RT-PCR(實時聚合酶鏈式反應)基因表達分析進行單個神經元分析的協議。
數據和結果的分析與理解
通過將使用針進行修補以提取內容進行下游分析的單個神經元的分子生物學結果,與激光顯微切割(LMD)解剖的神經元的結果進行比較,可以證明這兩種收集方法的結果是可比的。此外,LMD允許研究人員從死后人類中腦收集單個神經元,更具體地說,是從黑質(SN)中收集,因為DA神經元由于含有神經黑色素而呈黑色,因此很容易識別。使用LMD,可以分析來自死后帕金森病患者的單個存活DA神經元和匹配對照組的表達模式,目的是找到兩組在分子水平上的差異。這種調查有助于理解帕金森病的病因或后果。
研究黑質中多巴胺能神經元時面臨的挑戰
分析不同的死后標本就像是在帕金森病特定階段的“快照"。這些“快照"可以相互比較,但這些標本不能用于檢測改變的基因表達是疾病的結果還是原因。需要進一步研究這個問題。此外,考慮到帕金森病患者的基因表達僅在釋放多巴胺的神經元中發生改變,那么對于帕金森病謎題的研究,只應分析這些相關的細胞類型。如果不小心將其他細胞類型添加到分析物中,它們會降低結果的質量。
激光顯微切割
激光顯微切割(LMD),也稱為激光捕獲顯微切割(LCM),是一種用于從各種組織標本中在空間背景下隔離特定單個細胞或整個組織區域的無接觸、無污染的方法。原始組織的厚度、質地和制備相對不重要。
然后,可以使用進一步的分子生物學方法對切割下來的組織進行分析,如下一代測序(NGS),包括RNA測序、定量聚合酶鏈式反應(qPCR)、實時qPCR、蛋白質組學、代謝組學、脂質組學和多組學技術。LMD現在被廣泛應用于許多研究領域,例如病理學、神經學、癌癥、植物分析、法醫學和氣候學。此外,LMD還用于細胞培養的操作或蓋玻片的微雕刻。
LMD對于基因組學(DNA)、轉錄組學(RNA)和蛋白質組學(蛋白質)工作流程的優化非常有用,因為它允許在視覺控制下從組織中精確提取和收集純凈的起始材料以供分析。
使用LMD的結果
與完整的組織檢查結果相比,對單個細胞的分析經常顯示出不同的結果[3-6]。研究表明,帕金森病患者的組織中某些microRNA的表達發生了變化。
當同時檢查微切割的細胞時,發現microRNA的表達在細胞水平上并沒有變化。這種組織偽影是借助激光顯微切割檢測到的。
使用LMD系統可以實現單個細胞的無接觸切割,或者在必要時,實現更大面積組織的切割。切割下來的材料被捕獲在試管帽中,可以立即進行處理。請參考下面的圖2、圖3和圖4。
圖2:左圖:經過對10個單個DA神經元進行紫外線激光顯微切割(UV-LMD)后的鼠腦中腦冠狀切面,用甲酚紫染色。中圖:從上圖中選擇一個神經元進行LMD。右圖:在單個神經元切片(左)和蓋帽對照(右)上進行UV-LMD后,顯示了成功的隔離。
圖3:通過LMD和mRNA表達分析從人類PD(帕金森病)和對照死后大腦中分離出的單個黑質DA神經元。通過LMD從PD(A)和對照組大腦(B)的甲酚紫染色水平中腦冷凍切片中分離出神經黑色素陽性[NM(+)]神經元群。
圖4:LMD前后的甲酚紫染色小鼠大腦冷凍切片(A)和(B)[7]。
帕金森病研究的未來挑戰
目前,沒有用于早期診斷帕金森病的測試,而且該疾病存在許多變異。此外,還有一些具有類似癥狀的疾病。因此,一定比例的帕金森病病例被誤診或根本沒有被診斷出來。
成功治療帕金森病的前提是有效的早期診斷。如果能夠在神經元剛剛開始退化的初期階段診斷出疾病,就有可能防止神經元進行性退化并wan全阻止疾病的發展。
在血液或腦脊液中識別生物標志物是目前研究的主要焦點。有些基因不僅在大腦中表達,而且在所有細胞中普遍表達。如果帕金森病病例中多巴胺能神經元的這些基因表達發生變化,就可以更容易地檢查可接近的組織以用于診斷目的。
也許在不久的將來,激光顯微切割(LMD)與人工智能(AI)甚至質譜技術的結合,可以為更好地理解帕金森病帶來進一步的突破。
參考文獻:(上下滑動查看更多)
相關產品
Leica LMD6 & LMD7激光顯微切割系統
立即詢價
您提交后,專屬客服將第一時間為您服務