国产一卡2卡三卡4卡麻豆_了解最新日韩草逼视频_h片在线播放一区_国产激情影视在线_好了av四色综合无码久久_欧美黑白双插OOR720P_日本精品中文字幕在线_秋霞午夜手机影院_亚洲国产一区二区3da毛片_欧美杂交深喉video中文字幕

官方微信|手機版

產品展廳

產品求購企業資訊會展

發布詢價單

化工儀器網>產品展廳>生命科學儀器>植物生理生態儀器>植物熒光成像儀>HEXAGON-IMAGING-PAM 蜂巢矩陣葉綠素熒光成像系統

分享
舉報 評價

HEXAGON-IMAGING-PAM 蜂巢矩陣葉綠素熒光成像系統

具體成交價以合同協議為準
  • 公司名稱 上海澤泉科技股份有限公司
  • 品牌 其他品牌
  • 型號 HEXAGON-IMAGING-PAM
  • 產地 德國WALZ
  • 廠商性質 代理商
  • 更新時間 2024/11/11 11:28:49
  • 訪問次數 843

聯系方式:沈經理查看聯系方式

聯系我們時請說明是化工儀器網上看到的信息,謝謝!


 上海澤泉科技股份有限公司(Zealquest Scientific Technology Co., Ltd.)成立于2000年,是一家專注于科研設備研發、系統集成、技術推廣、咨詢、銷售和科研服務的科技型技術企業。公司注冊資金3500萬元人民幣,具有進出口貿易權。
 
公司總部位于上海浦西,在北京設有分公司,在廣州、成都、武漢分別設有代表處。公司全體員工均具有高等教育背景,其中80%的技術研發、技術支持和銷售人員具有碩士和博士學位,參加過很多國家和省部級重大科研項目,具有豐富的科研工作經驗。公司曾獲得上海市普陀區科技小巨人企業、上海市科技型企業中華全國工商聯合會/上海市工商聯合會/上海市商會會員單位,曾是上海市專業技術服務平臺——生理生態測量與分析平臺的依托單位和上海市高新技術成果轉化項目承擔單位。2012年公司通過了ISO9001質量管理體系認證,獲得AAA信用資質等級認定,獲得普陀區科技小巨人企業認定,成為上海市研發公共服務平臺加盟單位和“上海市工商聯合會”/“上海市商會”會員單位 。2015年獲得“專精特新”中小企業認定。2016年成為“上海市生態學學會常務理事單位”和“上海種子行業協會”會員單位,2017年成為“上海市農業工程學會理事單位”。
 
上海澤泉科技股份有限公司非常注重自主知識產權的申報和保護,截止2021年底已獲得發明6項、實用新型53項及軟件著作9項,國內外科研期刊發表科研論文20多篇。公司還參與承擔了國家自然科學基金重點項目(41030529)和水利部948項目(200907)。
 
公司秉承推進中國生態環境改善、農業興國的理念,服務涉及植物表型組學和基因組學、植物生理生態、土壤、環境氣象、水文水利、氫農業等領域的科研和技術支持,服務對象主要為各級科研單位、高校和政府機構。公司先后為科技部“973”項目和“863”項目、國家科技重大專項、國家科技支撐計劃、國家“211”工程和“985”工程、中科院知識創新工程、農業部“948”項目、水利部“948”項目等提供技術咨詢、儀器設備、系統解決方案和系統集成服務,為項目的順利完成提供了有力支持。
 
多年來,公司積極參與相關領域的學術會議,并定期舉辦相關儀器設備的技術講座和培訓班,在科研和監測領域產生了積極的反響,獲得了良好的口碑。截止2021年底,澤泉科技舉辦公開技術講座200多場,參會人員超過10000人次;同時在國內外應邀參加學術會議和展會200多次,與相關領域的客戶有非常密切的交流合作。
 
2014年2月,上海澤泉科技股份有限公司在上海浦東孫橋現代農業園區投資成立了上海乾菲諾農業科技有限公司,建設了AgriPhenoTM “高通量植物基因型-表型-育種服務平臺”,為植物科研和育種單位提供全面的樣品收集和栽培,實驗設計和項目合作,以及表型數據與生物信息學分析綜合服務。平臺成功主持了上海張江國家自主創新示范區專項發展資金重點項目“澤泉科技高通量植物基因型-表型-育種服務平臺”。作為主持單位或合作單位參與了上海市農委和科委的30多項政府科研服務項目以及商業服務項目,如科技興農種業發展項目“農作物分子育種的技術創新研究”和“青菜高通量表型圖譜標準的建立及主要性狀分析”、科技興農重點攻關項目“基于圖像分析及三維建模技術的黃瓜長勢快速評價方法研究”、 “蘭科觀賞花卉分子育種技術研究與產業化應用”等。為了緊追世界科技發展水平,開啟院企合作建立研究型平臺的創新嘗試,上海澤泉科技股份有限公司與上海市農業科學院,結合雙方各自的優勢,于2021年5月在上海農業科學院莊行試驗站聯合成立“上海市農業科學院莊行綜合試驗站澤泉科技植物表型技術研究平臺”,AgriPhenoTM平臺從上海浦東孫橋現代農業園區整體遷出,并入新建的植物表型技術研究平臺。目前平臺除擁有無人機表型平臺、溫室型和實驗室型高通量表型分析系統外,還擁有現代化溫室、生物學實驗室、植物生理生態測量設備、農業氣象測量系統和專業的數據庫平臺,已經具備了對植物、動物基因測序與植物表型研究的各類條件。可以承擔高通量DNA提取、基因測序服務、分子輔助育種、植物生理生態研究等科研實驗任務。同時可以為植物功能基因組、農業育種家提供高通量植物基因型測試、高通量植物表型測試和植物基因型-表型生物信息學數據分析等開放式服務。
 
公司積極響應上海市政府“崇明生態島建設”的發展方向,2016年12月澤泉科技在崇明城橋鎮投資成立了子公司—上海金盞農業發展有限公司,擴展建設田間智能化育種服務平臺,以及智能化農業物聯網“農業云平臺”,以生態鄉村、能源鄉村的發展模式,展示并實施公司自主研發的先進的農業樓宇基礎設施、溫室與田間的智能化“多因子”調控的栽培管理模式;擬建成擁有田間型高通量表型分析系統的“AgriPheno智能化育種服務平臺”,提高上海種業商業化育種的進程,并服務于全國和國外相關育種科研單位。
 
展望未來,上海澤泉科技股份有限公司希望在社會多方資源的支持和關懷下,不斷提升自己,為社會提供更多、更優秀的產品和服務!
 

CI-340手持式光合儀;CI-203手持式激光葉面積儀;CI-202葉面積儀;CI-110冠層分析儀;CI-600根系生長監測儀

產地類別 進口 價格區間 面議
應用領域 環保,食品,生物產業,農業

蜂巢矩陣葉綠素熒光成像系統

HEXAGON-IMAGING-PAM

葉綠素熒光成像系統的六邊形戰士

精度高,面積大,功能全,應用廣,文獻多,數據可視化!

header-hexagon-imaging-pam-2560x1440-1086f31d.jpg

HEXAGON-IMAGING-PAM是德國WALZ公司最新推出的大型蜂巢矩陣葉綠素熒光成像系統。它憑借高精度的脈沖振幅調制(PAM)技術,可以對20×24cm的區域進行成像。分辨率高達1.2 MP(1000 x 1200 px, 2x2 binning技術,實際是2000×2400),像素尺寸3.45 x 3.45 µm

超高分辨率的基礎是成像區域光場的均勻性,在設計過程中,光源陣列中LED的位置是經過精心布局的,以保證測量區域內無陰影,所有成像區域內的樣品均勻照光,樣品間的差異可以盡收眼底。大功率LED面板的冷卻效果非常好,可以最大限度的延長LED的使用壽命。

增加遠紅光(FR)LED 面板,可用于測量所研究樣品的Fo'值。

HEXAGON-IMAGING-PAM采用蜂巢矩陣式LED面板拼接技術,單個六邊形蜂巢矩陣單元之間LED的不平橫可以獨立補償,初衷是為實現樣品區域的理想照明提供更優選擇。

盡管成像區域很大,但是它依然足夠靈活,可以測量各種類型的樣品,如盆栽植物,穴盤中培養的植物,培養皿上的植物或多孔板中的藻類懸浮液。

滑動門設計,集成安全關閉功能,開門狀態下,飽和脈沖的強度會被抑制以保護操作人員的眼睛。

主要功能

l 原位測量:活體植物葉綠素熒光成像,直觀顯示樣品光合作用光能利用差異,可導出彩色圖像。

l 成像功能:對Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、PS/50=ETR、Inh等參數進行成像分析。測定調節性能量耗散Y(NPQ),反映植物光保護能力,測定非調節性能量耗散Y(NO),反映植物光損傷程度。

l 程序測量功能:可自動程序測量熒光誘導曲線、快速光曲線和暗弛豫,也可手動測量;在測量過程中能自動分析所有熒光參數的變化趨勢;可以預編程進行自定義實驗流程,如模擬波動光。

l AOI功能:可在測量前或測量后任意選擇感興趣的區域(AOI),程序將自動對選擇的AOI的數據進行變化趨勢分析,并在報告文件中顯示相關AOI的數據。所有報告文件中顯示的數據都可導出到EXCEL文件中。

l 成像異質性分析功能:對任意參數任意時間的成像,可在圖像上任意選取兩點,軟件自動對兩點間的數據進行橫向異質性分析,并可導出到EXCEL文件中。

l 成像數據范圍分析功能:對任意參數任意時間的成像,可分析任意兩個熒光數值之間有多少個像素點,多少面積(cm2

l 突變株篩選功能:可跟據成像結果快速篩選光合、產氫/油、抗逆(抗鹽、抗旱、抗病等)等突變株。

l 微藻毒理研究功能:可同時測量496孔板,即384個微藻樣品(對照和處理組)的光合活性,軟件自動給出處理組樣品相對于對照組的光合抑制百分比。

7599516cab1fcc6b75f0f9ceaa70ce5.png

應用領域

l 光合作用研究:可以在*相同的條件下同時對大量樣品進行成像

l 植物病理學:病斑部位(包括肉眼不可見時)成像以及病斑擴散的時空動力學

l 植物脅迫生理學:肉眼不可見生物/非生物脅迫損傷的早期檢測

l 遺傳育種:出苗后大規模快速篩選高光合/抗旱/抗熱/抗凍/抗病等植株

l 突變株篩選:快速篩選模式植物的光合突變株、抗逆突變株、產氫微藻突變株等

l 微藻毒理學:不同毒物濃度多個重復的樣品一次測完,軟件自動計算抑制比率

l 其它多種擴展研究

成像參數

Fo, Fm, F, Ft, Fm', Fv/Fm, Y(II), qL, qP, qN, NPQ, Y(NPQ), Y(NO), PS/50=ETR,Inh.

imagingwingige-software-screenshot-753f5098.png


<strong>蜂巢矩陣葉綠素熒光成像系統</strong>視頻二維碼.png

產地:德國WALZ

參考文獻

數據來源:光合作用文獻Endnote數據庫,原始數據來源:Google Scholar

注:HEXAGON-IMAGING-PAM為最新產品,暫無文獻發表,最新研究成果可參考M-IMAGING-PAM發表文章。

Salguero-Linares, J., et al. (2022). "Robust transcriptional indicators of immune cell death revealed by spatio-temporal transcriptome analyses." Molecular Plant.

Sandoval-Ibá?ez, O., et al. (2022). "De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b6f complex in Arabidopsis." Nature communications 13(1): 4045.

Gao, Y., et al. (2022). "Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation." The Plant Cell.

Ma, L., et al. (2022). "SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato." The Plant Cell.

Szechynska-Hebda, M., et al. (2022). "Aboveground Plant-to-Plant Electrical Signaling Mediates Network Acquired Acclimation." Plant Cell.

Xing, J., et al. (2022). "The plastid-encoded protein Orf2971 is required for protein translocation and chloroplast quality control." The Plant Cell.

Dahro, B., et al. (2022). "Two AT-Hook proteins regulate A/NINV7 expression to modulate sucrose catabolism for cold tolerance in Poncirus trifoliata." New Phytologist n/a(n/a).

Ivanova, A., et al. (2022). "Mitochondrial activity and biogenesis during resurrection of Haberlea rhodopensis." New Phytologist n/a(n/a).

Li, L., et al. (2022). "Genomes shed light on the evolution of Begonia, a mega-diverse genus." New Phytologist n/a(n/a).

Moog, M. W., et al. (2022). "The epidermal bladder cell-free mutant of the salt tolerant quinoa challenges our understanding of halophyte crop salinity tolerance." New Phytologist n/a(n/a).

Zhang, Y., et al. (2022). "CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis." New Phytologist n/a(n/a).

Ashok, A., et al. (2022). "Food-chain length determines the level of phenanthrene bioaccumulation in corals." Environmental Pollution: 118789.

Cai, W., et al. (2022). "CaSWC4 regulates the immunity-thermotolerance tradeoff by recruiting CabZIP63/CaWRKY40 to target genes and activating chromatin in pepper." PLOS Genetics 18(2): e1010023.

Castro, P. H., et al. (2022). "SUMO E3 Ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis." Plant Physiology.

Che, L., et al. (2022). "Rubredoxin 1 Is Required for Formation of the Functional Photosystem II Core Complex in Arabidopsis thaliana." Frontiers in Plant Science 13.

Chen, Q., et al. (2022). "Strategies of carbon use and photosynthetic performance of the two seaweeds Gracilaria chouae and Gracilariopsis lemaneiformis under different conditions of the carbonate system." Algal Research 64: 102713.

Gao, S., et al. (2022). "The growth and photosynthetic responses of white LEDs with supplemental blue light in green onion (Allium fistulosum L.) unveiled by Illumina and single-molecule real-time (SMRT) RNA-sequencing." Environmental and Experimental Botany: 104835.

He, J., et al. (2022). "The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis." Plant Physiology.

Hsieh, W.-Y., et al. (2022). "THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis." The Plant Journal n/a(n/a).

Kareem, H. A., et al. (2022). "Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages." Environmental Pollution 303: 119069.

Li, J., et al. (2022). "Melatonin enhances the low-temperature combined low-light tolerance of pepper (Capsicum annuum L.) seedlings by regulating photosynthesis, carotenoid, and hormone metabolism." Environmental and Experimental Botany 199: 104868.

Li, T., et al. (2022). "Environmental nitrogen and phosphorus nutrient variability triggers intracellular resource reallocation in Gracilariopsis lemaneiformis (Rhodophyta)." Algal Research 66: 102778.

Lin, S., et al. (2022). "Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress." Frontiers in Plant Science 13.

Liu, K., et al. (2022). "Melatonin delays leaf senescence and improves cucumber yield by modulating chlorophyll degradation and photoinhibition of PSII and PSI." Environmental and Experimental Botany 200: 104915.

Liu, Y., et al. (2022). "Brassinosteroids promote starch synthesis and the implication in low-light stress tolerance in Solanum lycopersicum." Environmental and Experimental Botany 201: 104990.

Lu, S., et al. (2022). "VvERF17 mediates chlorophyll degradation by transcriptional activation of chlorophyll catabolic genes in grape berry skin." Environmental and Experimental Botany 193: 104678.

Lynch, T., et al. (2022). "ABI5 binding protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation." Plant Physiology.

Lynch, T., et al. (2022). "ABI5 interacting protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation." Plant Physiology.

Okereke, C. N., et al. (2022). "Impact of heat stress of varying severity on papaya (Carica papaya) leaves: major changes in stress volatile signatures, but surprisingly small enhancement of total emissions." Environmental and Experimental Botany: 104777.

Om, K., et al. (2022). "Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis." Plant Physiology.

Pan, X., et al. (2022). "Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S." BMC Plant Biology 22(1): 44.

Pandey, K., et al. (2022). "Coordinated regulation of photosynthesis and sugar metabolism in guar increases tolerance to drought." Environmental and Experimental Botany 194: 104701.

Roach, T., et al. (2022). "Acquisition of desiccation tolerance in Haematococcus pluvialis requires photosynthesis and coincides with lipid and astaxanthin accumulation." Algal Research 64: 102699.

Rotasperti, L., et al. (2022). "The barley mutant happy under the sun 1 (hus1): An additional contribution to pale green crops." Environmental and Experimental Botany 196: 104795.

Shindo, A., et al. (2022). "Interactive effects of temperature and irradiance including spectral light quality on the photosynthesis of a brown alga Saccharina japonica (Laminariales) from Hokkaido, Japan." Algal Research 66: 102777.

Sohail, H., et al. (2022). "Genome-wide identification of plasma-membrane intrinsic proteins in pumpkin and functional characterization of CmoPIP1-4 under salinity stress." Environmental and Experimental Botany: 104995.

Song, W., et al. (2022). "Functional characterization and comparison of lycopene epsilon-cyclase genes in Nicotiana tabacum." BMC Plant Biology 22(1): 252.

Szádeczky-Kardoss, I., et al. (2022). "Elongation factor TFIIS is essential for heat stress adaptation in plants." Nucleic Acids Research.

Trainin, T., et al. (2022). "Physiological characterization of the wild almond Prunus arabica stem photosynthetic capability." Frontiers in Plant Science 13.

Xue, S., et al. (2022). "Effects of enhanced UV-B radiation on photosynthetic performance and non-photochemical quenching process of intertidal red macroalgae Neoporphyra haitanensis." Environmental and Experimental Botany: 104888.

Yang, L., et al. (2022). "Salt interferences to metabolite accumulation, flavonoid biosynthesis and photosynthetic activity in Tetrastigma hemsleyanum." Environmental and Experimental Botany 194: 104765.

Yang, L., et al. (2022). "Physiological Mechanism of Exogenous 5-Aminolevulinic Acid Improved the Tolerance of Chinese Cabbage (Brassica pekinensis L.) to Cadmium Stress." Frontiers in Plant Science 13.

Zhang, J., et al. (2022). "Early evaluation of adjuvant effects on topramezone efficacy under different temperature conditions using chlorophyll fluorescence tests." Frontiers in Plant Science 13.

Zhou, X., et al. (2022). "Physiological mechanism of strigolactone enhancing tolerance to low light stress in cucumber seedlings." BMC Plant Biology 22(1): 30.

Zhu, S., et al. (2022). "Cold stress tolerance of the intertidal red alga Neoporphyra haitanensis." BMC Plant Biology 22(1): 114.

014年2月,上海澤泉科技股份有限公司在上海浦東孫橋現代農業園區投資成立了上海乾菲諾農業科技有限公司,建設了AgriPhenoTM “高通量植物基因型-表型-育種服務平臺”,為植物科研和育種單位提供全面的樣品收集和栽培,實驗設計和項目合作,以及表型數據與生物信息學分析綜合服務。平臺成功主持了上海張江國家自主創新示范區專項發展資金重點項目“澤泉科技高通量植物基因型-表型-育種服務平臺”。作為主持單位或合作單位參與了上海市農委和科委的30多項政府科研服務項目以及商業服務項目,如科技興農種業發展項目“農作物分子育種的技術創新研究”和“青菜高通量表型圖譜標準的建立及主要性狀分析”、科技興農重點攻關項目“基于圖像分析及三維建模技術的黃瓜長勢快速評價方法研究”、 “蘭科觀賞花卉分子育種技術研究與產業化應用”等。為了緊追世界科技發展水平,開啟院企合作建立研究型平臺的創新嘗試,上海澤泉科技股份有限公司與上海市農業科學院,結合雙方各自的優勢,于2021年5月在上海農業科學院莊行試驗站聯合成立“上海市農業科學院莊行綜合試驗站澤泉科技植物表型技術研究平臺”,AgriPhenoTM平臺從上海浦東孫橋現代農業園區整體遷出,并入新建的植物表型技術研究平臺。目前平臺除擁有無人機表型平臺、溫室型和實驗室型高通量表型分析系統外,還擁有現代化溫室、生物學實驗室、植物生理生態測量設備、農業氣象測量系統和專業的數據庫平臺,已經具備了對植物、動物基因測序與植物表型研究的各類條件。可以承擔高通量DNA提取、基因測序服務、分子輔助育種、植物生理生態研究等科研實驗任務。同時可以為植物功能基因組、農業育種家提供高通量植物基因型測試、高通量植物表型測試和植物基因型-表型生物信息學數據分析等開放式服務。




化工儀器網

采購商登錄
記住賬號    找回密碼
沒有賬號?免費注冊

提示

×

*您想獲取產品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息:

溫馨提示

該企業已關閉在線交流功能

主站蜘蛛池模板: 西充县| 金华市| 五大连池市| 河津市| 银川市| 舒城县| 杭锦后旗| 从江县| 信阳市| 兖州市| 措美县| 浏阳市| 抚松县| 藁城市| 车险| 利津县| 宁明县| 达日县| 神木县| 华阴市| 青海省| 库尔勒市| 安远县| 视频| 怀柔区| 深水埗区| 凤城市| 湘乡市| 石台县| 托克托县| 华容县| 鄂温| 常德市| 阜宁县| 调兵山市| 宜兰县| 新田县| 贺州市| 安康市| 申扎县| 伊通|