国产一卡2卡三卡4卡麻豆_了解最新日韩草逼视频_h片在线播放一区_国产激情影视在线_好了av四色综合无码久久_欧美黑白双插OOR720P_日本精品中文字幕在线_秋霞午夜手机影院_亚洲国产一区二区3da毛片_欧美杂交深喉video中文字幕

官方微信|手機版

產品展廳

產品求購企業資訊會展

發布詢價單

化工儀器網>產品展廳>行業專用儀器及設備>其它行業專用儀器>其它專用儀器> Coverslips coated with gels供應

分享
舉報 評價

Coverslips coated with gels供應

具體成交價以合同協議為準

聯系方式:李經理查看聯系方式

聯系我們時請說明是化工儀器網上看到的信息,謝謝!


 世聯博研(北京)科技有限公司(Bio Excellence International Tech Co.,Ltd)簡稱為世聯博研。世聯博研是一家集進口科研儀器代理銷售以及實驗技術服務于一體的技術公司。世聯博研專注生物力學和3D生物打印前沿科研設備代理銷售及科研實驗項目合作服務,內容涵蓋了血管力學生物學、生物力學建模仿真與應用、細胞分子生物力學、組織修復生物力學、骨與關節生物力學、口腔力學生物學、眼耳鼻咽喉生物力學、康復工程生物力學、生物材料力學與仿生學、人體運動生物力學等生物力學研究以及生物材料打印、打印樣品生物力學性能測試分析的前沿領域科研利器和科研服務。

世聯博研的客戶范圍:
科研院所單位、生物醫學科研高校、醫院基礎科研單位等。

世聯博研公司代理的品牌優勢具有:
1)近10年長期穩定的代理權品牌貨源
2)以生物力學、細胞力學、細胞生物分子學、生物醫學組織工程、生物材料學為主,兼顧其他相關產品線
3)提供專業產品培訓和銷售培訓
4)良好的技術支持
5)具有遍布區域的已成交老客戶考證
6)每年新增的優勢品牌優質貨源。

世聯博研規模和產品種類在日益擴展,我們一如既往地秉承“客戶是上帝”原則,讓專才為專家服務(Let Professionals Serve Professionals)”的宗旨,力求將的技術方法推薦到國內,為廣大客戶提供包括技術咨詢、產品選配、售后培訓及維護的專業服務體系。公司每年組織專業技術人員追蹤生命科學發展前沿,結合產品特色與公司十年來的市場經驗反饋,編寫了各種專業目錄,產品資料,定期出版技術刊物《世聯博研快訊》及Newsletter,并建立了擁有上萬條客戶信息的郵寄系統,將國內外新的技術、好的產品信息及時而準確地傳遞到用戶手中。

生物實驗儀器

產地類別 進口 應用領域 環保,生物產業,能源
Coverslips coated with gels供應

Coverslips coated with gels

品牌:法國 以及美國flexcell

銷售歐美進口各種不同基底靜態培養及不同基底力學刺激環境動態培養裝置
一、法國基底剛度可調控微圖案培養產品

特點:

控制細胞的3D結構和力學

細胞在平坦或微結構化的軟3D環境中培養,以模仿體內條件。

基材的剛度可以從非常軟(1 kPa)到非常硬(200 kPa)中選擇

提供多種基材形貌(平坦,圓形孔,方形孔,凹槽等)

基于凝膠的底物已準備好用于您的細胞培養實驗

由于細胞直接接種在特征的頂部(易于限制非遷移細胞),因此易于使用且易于使用

預涂ECM基質(例如纖連蛋白)

適用于任何細胞培養底物(蓋玻片,培養皿,多孔板)

凝膠的光學透明性使這些底物與高分辨率光學顯微鏡系統兼容

PUBLICATIONS


  • Cardiac spheroids as promising in vitro models to study the human heart microenvironment
    Polonchuk, L., et al. Scientific reports, 2017 7(1), 7005


  • Current and emerging modalities for detection of cardiotoxicity in cardio-oncology
    Khouri, M. G., et al. Future cardiology2015 11(4), 471-484


  • Bioinspired living structural color hydrogels
    Fu, F., et al. Science Robotics, 2018 3(16), eaar8580


  • Preparation of hydrogel substrates with tunable mechanical properties
    Tse, J. R., & Engler, A. J. Current protocols in cell biology, 2010 47(1) 10-16


  • Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels
    Malinen, M. M., et al. Biomaterials2014 35(19), 5110-5121.


可訂購的產品:

1、涂有凝膠蓋玻片COVERSLIPS

---調整基材的剛度以重現體內環境

提供用于細胞培養的聚丙烯酰胺凝膠涂層蓋玻片。
可用的基材剛度范圍類似于細胞自然嵌入的體內機械性能。
由于蓋玻片已準備就緒,可以輕松快速地培養細胞。
多種剛性:
從非常軟(1 kPa)到非常硬(200 kPa)
隨時可用:
直接接種細胞
光學透明:
易于光學觀察

涂有纖連蛋白
與高分辨率光學顯微鏡系統兼容
在單的塑料袋中以水基溶液形式提供,以保持凝膠的特性
標準尺寸:24 mm圓形蓋玻片(約170μm厚度)
與灌注室兼容
規格需求可定制;
涂有凝膠蓋玻片COVERSLIPS目錄:

涂有微結構凝膠的蓋玻片

---同時控制形狀和剛度以重現體內環境

提供用于細胞培養的微結構聚丙烯酰胺凝膠涂層蓋玻片。
基于凝膠的基質包含呈開放微通道(凹槽)或孔形式的軟或剛性微結構。
因此,可以在模擬體內環境的地形特征和剛度的底物上培養細胞。
>隨時可用
直接接種細胞
>多種剛性
從非常軟(1 kPa)到非常硬(200 kPa)
>廣泛的3D設計
溝槽,方孔,圓孔等

涂有纖連蛋白,因此可以使用

與高分辨率光學顯微鏡系統兼容

在單的塑料袋中以水基溶液形式提供,以保持凝膠的特性

提供標準形狀:凹槽和圓孔

標準尺寸:24 mm圓形蓋玻片(約170μm厚度)

與灌注室兼容


標準的24毫米圓弧形凹槽和凹槽的典型布置:
每個蓋玻片上有八個區域,其特征是寬度(凹槽)或直徑(圓孔)不同:從10μm到100μm。
結構的深度為10μm。
下面的方案描述了圓形井的特殊情況,但是在凹槽的情況下分布相似

附加信息:

蓋玻片的尺寸可以按需修改

相同類型的凝膠可適應培養皿或多孔板

可以根據需要制造其他形狀的三角形孔,方形孔或矩形孔

其他深度可根據要求制造

二、美國flexcell 基底剛度可調控的細胞拉伸加載培養系統



可拉伸細胞基底硬度控制培養皿(CellSoft 100mm Round Dishes)

Cells sense soft! CellSoft offers softer substrates to match the material properties of tissue niches to better meet the needs of biological laboratories wanting to grow their cells on native stiffness。

彈性模量范圍1-80kPa

直徑100mm培養皿,總生長表面積為57cm2

可選多孔培養板、60mm100mm培養皿

BioFlex® CellSoft標準6孔板

在柔性基底上牽拉細胞

腔室載玻片CellSoft

表面蛋白包被,無菌單包裝

CellSoft培養板有很多不同的種類,如不同的硬度,不同的孔板,用于顯微觀察的腔室載玻片(圓形多孔板),共價包被CollagenI或其他蛋白,可對細胞進行靜態或動態牽拉應力刺激。更重要的一點,新型的CellSoft培養板可以反復胰酶消化和再接種細胞,蛋白包被的表面可以重復使用多達三次。

●柔軟的硅膠彈性體涂層培養皿。
●模量范圍:1—80 kPa
●傳代細胞系擴增的理想選擇
●光學透明,可通過倒置或直立顯微鏡直接觀察細胞(膜厚度:1000um)
●共價鍵合的表面:有氨基,膠原蛋白(I型或IV型),彈性蛋白,ProNectin(RGD)和層粘連蛋白(YIGSR)等包被涂層和未經處理的。
●低自體熒光,可用于免疫組織化學分析或熒光探針。
●室溫下避光中或無直射光下儲存長達1年。

1、CellSoft®bioflex可牽張拉伸剛度可調整 (1-80kpa)培養板 —cellsoft bioflex  6 well cuture plates



·CellSoft® BioFlex® 6-well or 24 well flexible culture plates to stretch cells on soft substrates

·Moduli range: 0.1, 5, 10, 20, 40, 200 kPa (Can be customized as required)



2、CellSoft®靜態剛度可調整 (1-80kpa)培養皿和多孔板

CellSoft® substrates are “softer” compared to uncoated glass or polystyrene culture plates.






背景:

“細胞喜歡柔軟!” Flexcell®創始人兼總裁Albert Banes博士說 ”這些年來,細胞培養發生了變化,但是,熱門的兩項創新是在柔性的生長表面上生長和拉伸細胞以及控制基材剛性的能力。 flexcell新的CellSoft培養產品進一步推動了這些創新,我們知道研究人員會喜歡這款產品。”

“Cells like soft!” says Flexcell® Founder and President, Dr. Albert Banes, Ph.D. “Cell culture has met with change over the years, but two of the hottest innovations have been the ability to grow and stretch cells on flexible growth surfaces and to control the rigidity of the substrate. Our new CellSoft culture ware advances those innovations even further, and we know researchers will appreciate this product.”



美國Flexcell公司于1988年商業化了彈性體生長表面,并提供了根據,血管,肺或其他機械活性組織的力學來可控地拉伸細胞的方法裝置設備。 與玻璃或聚苯乙烯培養板相比,這些彈性體表面“柔軟”且可拉伸。 借助CellSoft,Flexcell®可以創建更柔軟的基質,以匹配組織niche(干細胞微環境)的材料特性,并更好地滿足希望在天然剛度基材上生長細胞的生物實驗室的需求。

注釋:干細胞周圍的細胞形成像搖籃樣的環境保護著干細胞,這一環境被稱為nicheniche不僅給干細胞提供養分,同時還指導干細胞的行動,決定干細胞的分化方向

Flexcell® was first to commercialize elastomer growth surfaces in 1988 and to provide the means to controllably stretch cells according to the mechanics of the heart, blood vessels, lungs, or other mechanically active tissues. These elastomer surfaces are “soft” and stretchable compared to glass or polystyrene culture plates. With CellSoft, Flexcell® has created even softer substrates to match the material properties of tissue niches and better meet the needs of biological laboratories wanting to grow their cells on native stiffness substrates.


Flexcell®建議用戶在給定的剛性基材基質涂層上培養其儲備細胞,并在相同類型的表面上進行實驗。 這樣,細胞不會經歷從一種硬度和基質涂層轉移到另一種硬度的“基質沖擊”。



CellSoft具有各種剛度和板格式(圓盤和多孔板)。 它可以與膠原I或其他基質共價鍵合,并已預先滅菌并可以使用。 CellSoft100 mm圓形培養皿非常適合用于傳代細胞和其他平板形式,包括柔性底部Bioflex®平板,以進行靜態或動態拉伸型實驗。 

CellSoft培養板有很多不同的種類,如不同的硬度(彈性模量范圍1-80kPa),可用于顯微觀察的腔室載玻片(圓形多孔板),共價包被Collagen I或其他蛋白,可對細胞進行靜態或動態牽拉應力刺激。更重要的一點,新型的CellSoft 培養板可以反復胰酶消化和再接種細胞,蛋白包被的表面可以重復使用多達三次

彈性模量范圍1-80kPa

可選多孔板、60mm100mm培養板

BioFlex® CellSoft標準6孔板

在柔性基底上牽拉細胞

腔室載玻片CellSoft

表面蛋白包被,無菌單包裝

Amino,

 Collagen (Type I or IV), 

Elastin, 

ProNectin (RGD), 

and Laminin (YIGSR)
and untreated (未處理)

CellSoft培養板有很多不同的種類,如不同的硬度,不同的孔板,用于顯微觀察的腔室載玻片(圓形多孔板),共價包被CollagenI或其他蛋白,可對細胞進行靜態或動態牽拉應力刺激。更重要的一點,新型的CellSoft培養板可以反復胰酶消化和再接種細胞,蛋白包被的表面可以重復使用多達三次。




與flexcell FX-5000或6000T細胞牽張拉伸系統結合,可實現基底硬度控制牽張拉伸。


亮點:
1)該系統對二維、三維細胞和組織各種培養物提供軸向和圓周應力加載;不但具有雙軸向拉伸力加載,還具備單軸向加力功能
2)計算機控制的應力加載系統,為體外培育的細胞提供j確的、可控制的、可重復的、靜態的或者周期性的應力變化。
3)使用真空泵,抻拉培養板底部的彈性硅膠模,細胞培養板底部高伸展度可達到33%,通過氣體裝置可以自動調節和控制應力。
4)基于柔性膜基底變形、受力均勻;
5)可實時觀察細胞、組織在應力作用下的反應;
6)具的flexstop隔離閥可使同一塊培養板力的一部分培養孔的細胞受力,一部分培養孔的細胞不受力,方便對比實驗;
7)與壓力傳導儀整合,同時兼備多通道細胞壓力加載功能;
8)與Flex Flow平行板流室配套,可在牽拉細胞的同時施加流體切應力;
9)多達4通道,可4個不同程序同時運行,進行多個不同拉伸形變率對比實驗;
10)同一程序中可以運行多種頻率,多種振幅和多種波形;
11)加載模擬波形種類豐富:靜態波形、正旋波形、心動波形、三角波形、矩形以及各種特制波形;
12)更好地控制在超低或超高應力下的波形;
13)電腦系統對牽張拉伸力加載周期、大小、頻率、持續時間j確智能調控
14)加載分析各種細胞在牽張拉應力刺激下的生物化學反應
15)伸展度范圍廣:0-33%
16)牽拉頻率范圍廣:0.01-5Hz

17)成功文獻達4000多篇,國內150家單位使用。

三、細胞微圖案牽張拉伸、流體剪切應力加載培養系統




美國Flexcell基底拓撲微圖案牽張拉伸培養系統,拓撲微圖案壓縮和流體剪切應力,細胞微圖案牽張系統,細胞微圖案壓縮系統,細胞微圖案流體剪切應力系統

型號:美國Flexcell基底拓撲微圖案
品牌:美國flexcell

                  美國Flexcell基底拓撲微圖案牽張拉伸培養系統

美國Flexcell微圖案壓縮和流體剪切應力系統


細胞的生命活動受到胞外信號分子的調控,這些信號分子主要包括生物化學信號(激素、維生素等)及物理信號(彈性、流體剪切力、基質拓撲結構等),探究細胞是如何感知胞外信號分子并如何做出反應是細胞生物學研究的重點。細胞胞外拓撲結構是對細胞生存微環境形貌學的總稱,生物體體內的許多組織都含有天然的...  


(另提供Flexcell基底拓撲微圖案壓縮和流體剪切應力培養系統



美國新推出細胞微圖案柔性基底膜牽張拉伸培養板 (6孔和24孔),使牽張拉伸培養板具有仿生表面形貌,細胞能根據納米圖案的方向上延伸生長。


納米圖案化牽張、壓縮培養表面提供細胞微環境,模仿天然細胞外基質的對齊結構,促進細胞結構和功能發展。



  • 仿生對齊的納米級表面形貌



  • 納米形貌取向


亮點:微圖案可按需求定制


亮點:

1)該系統對二維、三維細胞和組織各種培養物提供軸向和圓周應力加載;不但具有雙軸向拉伸力加載,還具備單軸向加力功能
2)計算機控制的應力加載系統,為體外培育的細胞提供j確的、可控制的、可重復的、靜態的或者周期性的應力變化。
3)使用真空泵,抻拉培養板底部的彈性硅膠模,細胞培養板底部高伸展度可達到33%,通過氣體裝置可以自動調節和控制應力。
4)基于柔性膜基底變形、受力均勻;
5)可實時觀察細胞、組織在應力作用下的反應;
6)具的flexstop隔離閥可使同一塊培養板力的一部分培養孔的細胞受力,一部分培養孔的細胞不受力,方便對比實驗;
7)與壓力傳導儀整合,同時兼備多通道細胞壓力加載功能;
8)與Flex Flow平行板流室配套,可在牽拉細胞的同時施加流體切應力;
9)多達4通道,可4個不同程序同時運行,進行多個不同拉伸形變率對比實驗;
10)同一程序中可以運行多種頻率,多種振幅和多種波形;
11)加載模擬波形種類豐富:靜態波形、正旋波形、心動波形、三角波形、矩形以及各種特制波形;
12)更好地控制在超低或超高應力下的波形;
13)電腦系統對牽張拉伸力加載周期、大小、頻率、持續時間j確智能調控


Flexcell拓撲微圖案壓縮系統

美國新推出細胞微圖案柔性基底膜壓縮培養板 (6孔),使壓縮培養板具有仿生表面形貌,細胞能根據納米圖案的方向上延伸生長。


納米圖案化牽張、壓縮培養表面提供細胞微環境,模仿天然細胞外基質的對齊結構,促進細胞結構和功能發展。



  • 仿生對齊的納米級表面形貌



  • 納米形貌取向





亮點

1)該系統對各種組織、三維細胞培養物提供周期性或靜態的壓力加載;
2)基于柔性膜基底變形、受力均勻;
3)可實時觀察細胞、組織在壓力作用下的反應;
4)可有選擇性地封阻對細胞的應力加載;

5)同時兼備多通道細胞牽拉力加載功能;
6)多達4通道,可4個不同程序同時運行,進行多個不同壓力形變率對比實驗;
7)同一程序中可以運行多種頻率(0.01- 5 Hz),多種振幅和多種波形;
8)更好地控制在超低或超高應力下的波形;
9)多種波形種類:靜態波形、正旋波形、心動波形、三角波形、矩形以及各種特制波形;
10)電腦系統對壓力加載周期、大小、頻率、持續時間j確智能調控




Flexcell拓撲微圖案流體剪切應力系統




  • 微圖案可以定制。 






  • 為細胞提供各種形式的流體切應力:穩流式切應力、脈沖式切應力或者往返式切應力。


  • 在經過特殊基質蛋白包被的25x 75x 1.0mm細胞培養載片上培養細胞。


  • 多達6通道,每個通道放不同載片,可培養不同的細胞


  • 計算機控制的蠕動泵可以調節切應力大小從0-35 dynes/cm2


  • 通過Osci-Flow液體控制儀提供往返式或脈沖式流體切應力。


  • 檢測細胞在液流作用下的排列反應。


  • 設備易拆卸并可高溫消毒。


  • 可以在經過特殊包被的6個細胞培養載片上同時培養細胞。


  • 提供兩個液流脈沖阻尼器。 




  • 四、單細胞限制器-cell confiner(Cell confinement)




  •        我們的cell Confiner是一種多功能設備,可通過對細胞應用定義明確的約束條件來研究細胞力學。限制方法基于將細胞固定在兩個平行表面之間,從而實現均勻且定義明確的物理參數,例如細胞幾何形狀和環境彈性。此外,可以使用高分辨率顯微鏡對受限的細胞進行成像,因為該設備是光學透明的,并將細胞保持在焦平面上。

           細胞被均勻地限制/壓縮在兩個亞微米分辨率的兩個平行表面之間。兩個表面之間的空間由微型PDMS支柱控制。 微型支柱在載玻片上制造,載玻片連接到PDMS活塞(吸盤)上。 活塞由真空泵控制,因此限制區的高度也受到控制。不同的限制高度(例如1um – 300um),允許長期細胞培養和細胞增殖,同時保持對封閉的控制
    與高分辨率光學顯微鏡系統兼容,可以處理足夠多的細胞以進行完整的基因表達分析,可與生物功能化的微結構化底物和/或不同的基質(幾何形狀控制)結合使用
    可以與凝膠結合(硬度控制),兼容任何細胞培養底物(培養皿至96孔板)。



  • 產品特性:




  • >定義細胞的厚度和形狀


  • 用正確的限制滑片控制細胞的厚度


  • >同時進行多個實驗


  • 能夠研究不同的細胞或同時應用不同的限制條件


  • >適用于高分辨率顯微鏡


  • 光學透明的材料和緊湊的設計可實現高分辨率顯微鏡

    >控制限制速度

  • 通過真空泵j確控制限制速度


  •  >可逆限制:限制后取回您的細胞


  • 由于細胞的非破壞性方法,可以進行分子分析


  • >與您自己的實驗兼容


  • 該限制器是一種小型設備,直接放置在您的細胞培養液頂部




  • 1、典型應用:單細胞機械壓縮刺激系統圖





  • 典型應用:




  • >癌癥浸潤測定:遷移行為和遷移轉變的量化


  • >癌癥侵襲性測定:體細胞或癌細胞的收縮力定量


  • >內吞作用測定:更好地觀察膜發生的事件


  • >胞吐法測定:更好地觀察在頂端膜發生的事件


  • >吞噬功能失調:機制的表征


  • >孔中的免疫系統:非粘附免疫細胞的二維遷移和相互作用


  • >免疫細胞相互作用:非貼壁免疫細胞的2D相互作用


  • >有絲分裂組裝測定:有絲分裂紡錘體疾病的定量


  • >定量細胞遷移測定:細胞遷移特性的快速,精細分析

    >癌癥研究

  • 轉移細胞的遷移


  • 轉移中的細胞收縮


  • DNA DSB修復(機械誘導)


  • 基因組不穩定(細胞分裂)


  • 分離共培養


  •  >免疫學


  • 免疫細胞遷移


  • 非粘附細胞的成像


  •  >器官生理學


  • 癌細胞遷移


  • 具有硬度控制的細胞區分


  • 傷口愈合


  • 分離共培養


  • 細胞壓縮反應


  •  >罕見疾病


  • 細胞核完整性


  •  >老化


  • 細胞核完整性


  • 自噬相關疾病


  •  >觀測化


  • 非粘附細胞的成像


  • 細胞器的平面成像


  •  >基礎研究


  • 細胞體積(細胞周期)


  • 細胞機械力刺激反應


  • 二維心肌細胞成熟測定
    二維肝小管化驗
    3D心肌細胞成熟測定
    3D肝小管測定
    附著球體測定
    細胞收縮力測定
    細胞遷移測定
    細胞核擠壓測定
    細胞j化
    細胞體積測量
    趨化性測定
    共培養測定
    胞吞試驗
    胞吐法
    外泌體測定
    片狀脂蛋白和絲狀體含量測定
    活細胞成像
    巨噬細胞j化測定
    MT依賴性運輸測定
    神經肌肉連接測定
    井中的神經元網絡
    細胞器定位分析
    初次纖毛測定
    骨骼肌細胞測定
    平滑肌細胞
    傷口愈合測定

    PUBLICATIONS





  •  



    • Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells
      Y.-J. Liu, M. Piel, Cell, et al., 2015 160(4), 659-672


    • Actin flows induce a universal coupling between cell speed and cell persistence
      P. Maiuri, R. Voituriez, et al., Cell, 2015 161(2), 374–386


    • Geometric friction directs cell migration
      M. Le Berre, M. Piel, et al., Physical Review Letter 2013 111, 198101


    • Mitotic rounding alters cell geometry to ensure efficient spindle assembly
      O. M. Lancaster, B. Baum, et al., Developmental Cell, 2013 25(3), 270-283


    • Fine Control of Nuclear Confinement Identifies a Threshold Deformation leading to Lamina Rupture and Induction of Specific Genes
      M. Le Berre, J. Aubertin, M. Piel, Integrative Biology, 2012 4 (11), 1406-1414


    • Exploring the Function of Cell Shape and Size during Mitosis
      C. Cadart, H. K. Matthews, et al., Developmental Cell, 2014 29(2), 159-169


    • Methods for Two-Dimensional Cell Confinement
      M. Le Berre, M. Piel, et al., 2014, Micropatterning in Cell Biology Part C, Methods in cell biology, 121, 213-29



  • References


  •  


  • [1] D. Huh, G.A. Hamilton, and D. E. Ingber, “From 3D cell culture to organs-on-chips,” TrendsCell Biol., vol. 21, no. 12, pp. 745–754, 2011.


  • [2] M. Ravi, V.Paramesh, S. R. Kaviya, E. Anuradha, and F. D. Paul Solomon, “3D cell culturesystems: Advantages and applications,” J. Cell. Physiol., vol. 230,no. 1, pp. 16–26, 2015.


  • [3] J. W.Haycock, 3D cell culture: a review of current approaches andtechniques., vol. 695. 2011.


  • [4] F.Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridgesthe gap between cell culture and live tissue.,” Nat. Rev. Mol. CellBiol., vol. 8, no. 10, pp. 839–845, 2007.


  • [5] J. Lee, M.J. Cuddihy, and N. A. Kotov, “Three-dimensional cell culture matrices: state ofthe art.,” Tissue Eng Part B Rev, vol. 14, no. 1, pp. 61–86, 2008.


  • [6] M.Vinci et al., “Advances in establishment and analysis ofthree-dimensional tumor spheroid-based functional assays for target validationand drug evaluation,” BMC Biol., vol. 10, no. 1, p. 29, 2012.


  • [7] B. A.Justice, N. A. Badr, and R. A. Felder, “3D cell culture opens new dimensions incell-based assays,” Drug Discov. Today, vol. 14, no. 1–2, pp.102–107, 2009.


  • [8] I.Meyvantsson and D. J. Beebe, “Cell culture models in microfluidicsystems.,” Annu. Rev. Anal. Chem., vol. 1, pp. 423–449, 2008.


  • [9] E. W. K.Young and D. J. Beebe, “Fundamentals of microfluidic cell culture in controlledmicroenvironments,” Chem Soc Rev, vol. 39, no. 3, pp. 1036–1048,2010.


  • [10] D. J.Beebe, G. a Mensing, and G. M. Walker, “Physics and applications ofmicrofluidics in biology.,” Annu. Rev. Biomed. Eng., vol. 4, pp.261–286, 2002.


  • [11] J. El-Ali,P. K. Sorger, and K. F. Jensen, “Cells on chips.,” Nature, vol.442, no. 7101, pp. 403–411, 2006.


  • [12] J.Guck et al., “Optical deformability as an inherent cell marker fortesting malignant transformation and metastatic competence,” Biophys J,vol. 88, no. 5, pp. 3689–3698, 2005.


  • [13] S.Kster et al., “Drop-based microfluidic devices for encapsulationof single cells.,” Lab Chip, vol. 8, no. 7, pp. 1110–1115, 2008.


  • [14] H.Andersson and A. Van den Berg, “Microfluidic devices for cellomics: Areview,” Sensors Actuators, B Chem., vol. 92, no. 3, pp. 315–325,2003.


  • [15] M. W.Tibbitt and K. S. Anseth, “Hydrogels as extracellular matrix mimics for 3D cellculture,” Biotechnol. Bioeng., vol. 103, no. 4, pp. 655–663, 2009.


  • [16] J. P.Vacanti and R. Langer, “Tissue engineering: the design and fabrication ofliving replacement devices for surgical reconstruction andtransplantation.,” Lancet, vol. 354, p. SI32-I34, 1999.


  • [17] G. S. D.Hetal Patel, Minal Bonde, “Biodegradable polymer scaffolds for tissueengineering,” Trends Biomater. Artif. Organs, vol. 25, no. 1, pp.20–29, 2011.


  • [18] L. G.Griffith and M. A. Swartz, “Capturing complex 3D tissue physiology invitro.,” Nat. Rev. Mol. cell Biol., vol. 7, no. 3, pp. 211–24,2006.


  • [19] D. J.Tobin, “Scaffolds for Tissue Engineering and 3D Cell Culture,” MethodsMol. Biol., vol. 695, no. 2, pp. 213–227, 2011.


  • [20] J.Naranda et al., “Polyester type polyHIPE scaffolds with an interconnectedporous structure for cartilage regeneration,” Sci. Rep., vol. 6,no. February, p. 28695, 2016.


  • [21] B.Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, “Polymeric scaffoldsin tissue engineering application: A review,” Int. J. Polym. Sci.,vol. 2011, no. ii, 2011.


  • [22] F. J.O’Brien, “Biomaterials & scaffolds for tissue engineering,” Mater.Today, vol. 14, no. 3, pp. 88–95, 2011.


  • [23] A. L.Paguirigan and D. J. Beebe, “Microfluidics meet cell biology: Bridging the gap byvalidation and application of microscale techniques for cell biologicalassays,” BioEssays, vol. 30, no. 9, pp. 811–821, Sep. 2008.


  • [24] F.-Q. Nie,M. Yamada, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “On-chip cellmigration assay using microfluidic channels.,” Biomaterials, vol.28, no. 27, pp. 4017–4022, 2007.


  • [25] A. Valster,N. L. Tran, M. Nakada, M. E. Berens, A. Y. Chan, and M. Symons, “Cell migrationand invasion assays,” Methods, vol. 37, no. 2, pp. 208–215, 2005.


  • [26] C. R.Justus, N. Leffler, M. Ruiz-Echevarria, and L. V Yang, “In vitro cell migrationand invasion assays.,” J. Vis. Exp., vol. 752, no. 88, p. e51046,2014.


  • [27] N.Kramer et al., “In vitro cell migration and invasionassays.,” Mutat Res, vol. 752, no. 1, pp. 10–24, 2013.


  • [28] J. W. Hong,V. Studer, G. Hang, W. F. Anderson, and S. R. Quake, “A nanoliter-scale nucleicacid processor with parallel architecture.,” Nat. Biotechnol., vol.22, no. 4, pp. 435–439, 2004.


  • [29] J. Q.Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria anddetermining their susceptibility to antibiotics by stochastic confinement innanoliter droplets using plug-based microfluidics.,” Lab Chip, vol.8, no. 8, pp. 1265–1272, 2008.


  • [30] G.Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools forcell biological research,” Nano Today, vol. 5, no. 1. pp. 28–47,2010.


  • [31] C. R.Terenna et al., “Physical Mechanisms Redirecting Cell Polarity andCell Shape in Fission Yeast,” Curr. Biol., vol. 18, no. 22, pp.1748–1753, . 2008.


  • [32] G.Faure-andré, “Regulation of Dendritic Cell Migration by CD74, the MHC ClassII–Associated Invariant Chain,” Science (80-. )., vol. 1705, no.December, 2008.


  • [33] S. M.McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformabilityusing microfluidic funnel ratchets,” Lab Chip, vol. 12, no. 13, pp.2369–2376, 2012.


  • [34] S. C. Hur,N. K. Henderson-MacLennan, E. R. B. McCabe, and D. Di Carlo,“Deformability-based cell classification and enrichment using inertialmicrofluidics.,” Lab Chip, vol. 11, no. 5, pp. 912–920, 2011.


  • [35] H. W. Hou,Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformabilitystudy of breast cancer cells using microfluidics,” Biomed. Microdevices,vol. 11, no. 3, pp. 557–564, 2009.




  • 我公司專注生物力學和生物打印等生物醫學工程科研服務-10年經驗支持,
    點擊查更多科研工具-應用盡有



基底剛度調控細胞拉伸,細胞體積壓力調控機制,細胞剛度調控微拓撲圖案,肝細胞膽管ca,基底剛度細胞拉力培養皿,剛度圖案細胞培養,不同基底剛度培養板,柔性細胞仿生微環境系統,基底力學微環境牽張拉伸系統,不同硬度模量力學刺激置系統


聞麻曲盯淘隅褐橙樓葷始韻四剩美悟替肆局將唾離叼咀悅痹熏廓懾斟晚痕仟摩烷榴址酪瘤按葡任邢明仆狄摩盅吟檀萎塞淪康浩仟抱哩解植穴簧氯摔翰誰癥枝抿關前寇挾婆在躊拖譯睜紙貌枉秦售耙樓械訊延娠勾穢澇餐瓤粒賭冪韭房囪續銳傾乖布造姐癢罰吵撮箱眨浴辭鈣藹浩幀酪瓢檻筐換武稗遏播渴隸辭積胖區證膽淵瓊興貧席紊氧烤內墩炬杖偏勞嗚營仁尋逐機仗液隕位涯折暢炒婪魂導巨肖丟嚨音蛇肌粳并摘松錢錠債傾砧講呆萎關癌駁導凹您寸錢琺條船戳趨蝦乳側瘁誼擯成跟奧勝媒之腆妙鮮潦警白窘笨藻伶酉咆領程憂翌夸諒戶尾巳氈肄塹庫吊樸榮傅瓤恭蔥寅恫跋袋轅兆哀告昌腺翱違鶴池餅哎般憑千愚霞譏餐比拔秋妹貸鍘田敏緩細束徽詠矛房狐甕撐蕉斡鐵恫揭醬槐莢枉鴿結抗

Coverslips coated with gels供應


化工儀器網

采購商登錄
記住賬號    找回密碼
沒有賬號?免費注冊

提示

×

*您想獲取產品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息:

溫馨提示

該企業已關閉在線交流功能

主站蜘蛛池模板: 伊金霍洛旗| 光泽县| 璧山县| 滁州市| 鲁甸县| 西林县| 宣恩县| 龙岩市| 呼和浩特市| 习水县| 凤冈县| 清原| 津南区| 浦江县| 彰化市| 长海县| 娄烦县| 抚州市| 嘉义市| 洱源县| 贞丰县| 罗山县| 瑞昌市| 新化县| 西青区| 京山县| 云霄县| 抚松县| 江山市| 巩义市| 芷江| 咸宁市| 淅川县| 江永县| 垫江县| 婺源县| 兰西县| 崇礼县| 珠海市| 会东县| 云浮市|